

Invasive alien plants as an interesting raw material for biobased products

<u>Tea Kapun</u>, Janja Zule, Andrej Šinkovec (Pulp and Paper Institute, Slovenia) Blaž Likozar, Miha Grilc (National Institute of Chemistry, Slovenia)

MORE ABOUT THE PROJECT: https://www.ljubljana.si/sl/moja-ljubljana/applause/

About the project Applause

- Co-financed by the European Regional Development Fund (Urban Innovative Actions)
- ··→ Project estimation cca 5 mio €, co-financed cca 4 mio €
- ----> Project duration: 1.11.2017 31.10.2020

What are invasive alien species?

- → IAPS replace native species, change ecosystems, cause economy harm or even endanger human health
- ---> IAPS being composed or burnt

PULP AND PAPER INSTITUTE, LJUBLJANA Innovative Cellulose Products

III Development of new tools for identifying invasive alien plants (analysis of ortho photo and satellite pictures)

III Development of Business model

The role of ICP in the project Applause

12.000 kg of biomass ≈ 6.000 kg of cellulose pulp

4.000 kg for pilot papermaking (ICP) 2.000 kg for hand papermaking

Educational publications Promotional materials 3 Innovative products

Selection of seven

Ailanthus

Black locust

Canadian / Giant goldenrod

Rhus

Rudbeckia

Bohemian knotweed

WOODY SPECIES

Japanese knotweed

HERBACEOUS PLANTS

General scheme for chemical characterization of IAPS

Results of chemical characterization

Chemical structure \ IAPS	Ailanthus	Rhus	Black locust	Canadian goldenrod	Rudbeckia	Japanese knotweed	Bohemian knotweed
Ash [%]	2,7	0,3	0,3	2,3	2,8	2,5	1,8
Hexane extractives [%]	1,9	0,7	0,3	<mark>0,6</mark>	0,6	0,4	0,2
Ethanol extractives [%]	<mark>6,6</mark>	4,5	4,7	1,6	0,9	1,1	1,2
Cellulose [%]	27	40	41	37	37	35	36
Hemicellulose [%]	39,2	37,4	34,7	36,4	38,8	36,6	34,9
Lignin [%]	17,8	16,5	21,9	19,1	16,8	26,8	25,1

IMPORTANT

Cellulose content > 35% Extractive content < 5% Ash content < 5% Lignin content as low as possible – delignification

Delignification

Important parameters:

- chemicals
- delignification parameters: T(p), t
- ratio reagent / SS

Filling the reactor

Reactor during delignification

<u>After delignification</u>: leaching (P+BL), washing, disintegration, screening (fibers + impurities), squeezing, homogenization of fibers

Washed, delignified pulp

Screening

Homogenization of the fibers

Important:

- dry matter content
- yield
- Kappa number

PULP AND PAPER INSTITUTE, LJUBLJANA Innovative Cellulose Products

Delignification

Ailanthus

Rhus

Black locust

Canadian / Giant goldenrod

Rudbeckia

Bohemian knotweed

Japanese knotweed

Fiber analysis...

IAPS	Ailanthus	Rhus	Black locust	Canadian goldenrod	Rudbeckia	Bohemian knotweed	Japanese knotweed
Lc(n) [mm]	0,4	0,4	0,5	0,3	0,5	0,4	0,4
FW [µm]	15,3	12,2	12,5	16,1	21,1	19,3	20,3
Curl [%]	5,0	1,5	8,2	5,5	9,7	18,8	<mark>8,</mark> 0
Fines [%]	33,3	18,2	53,8	47,9	33,3	52,3	48,7

Legend: Lc(n) – arithmetic average fiber length; FW – length-weighted average fiber width; Curl – length-weighted average fiber curl; Fines – fines as percentage of arithmetic distribution

Morphology

Fiber analysis...

sample sealing cone wire screen calibrated capillary overflow

2

Mechanical properties were measured on laboratory sheets

Testing of laboratory sheets

	Ailanthus	Rhus	Black locust	Canadian	Rudbeckia	Japanese	Bohemian
				golaenroa		knotweed	knotweed
Drainability [°SR]	27	39,5	24,5	45	46	51	54
Specific volume [cm ³ /g]	1,70	1,39	1,78	1,59	1,42	1,53	1,51
Tensile index [Nm/g]	64,49	78,98	65,74	63,92	84,18	66,95	61,56
Breaking length [km]	6,574	8,051	6,701	6,516	8,581	6,825	6,275
Tearing index [mNm ² /g]	5,00	3,91	6,06	2,59	5,59	3,72	3,51
Bursting index [kPam ² /g]	3,81	4,54	4,21	3,13	4,70	3,96	3,45
Stifness L&W 15° [mN]	73,8	63,0	90,4	83,6	54,9	47,0	45,6
Air permeability [ml/min]	945,7	104,1	3111,9	290,9	17,3	52,8	94,8

Selection of 3 IAPS for pilot paper making:

- Wood species represents a technological problem
- (1) Japanese / Bohemian knotweed
- (2) Canadian / Giant goldenrod
- (3) Rudbeckia !!!

Pilot papermaking

Biomass

Cooking

After delignification

Refining

Pilot paper production

Educational publications Promotional materials 3 Innovative products

Starting points

Products attributes:

- ---> Innovative
- ----> Environmental friendly
- ----> Biodegradable
- ----> Compliant with circular economy concept
- --> Zero waste green technology

Trends:

- ---> Reduction of plastic products
- ---> Ban on single-use plastic products
- ---> Sustainability

4 directions of innovative product development – 3 different target groups

- ··→ WASTE COMPOSTING & ODOUR ELIMINATION
- ----> PACKAGING
- ----> TABLE GAMES
- ··→ "PICNIC SET"

PULP AND PAPER INSTITUTE, LJUBLJANA Innovative Cellulose Products

THANK YOU FOR YOUR ATTENTION! ANY QUESTIONS? NO? GREAT! BYE.

Special thanks to: Matej Šuštaršič, Ema Fabjan, Aleš Rome, Marija Skodlar

