Thermal- and Electrical Energy Savings for the Paper Machine's Drying Section with Smart Process Control Systems

45<sup>th</sup> International Annual Symposium DITP 14<sup>th</sup>/15<sup>th</sup> November 2018, Bled, Slovenia

Unrestricted © Siemens AG 2018

Dr. H. Schwarz

**SIEMENS** 

Ingenuity for life



# Agenda

| 1  | Smart Controls                                             |
|----|------------------------------------------------------------|
| 2  | Dynamic Process Optimization (Advance Process Control APC) |
| 2a | SIPAPER Bleach and Flotation (DIP)                         |
| 2b | SIPAPER Dry Sec                                            |
| 5  | Outlook                                                    |

H.Schwarz / PD SLN FI

# Siemens since October 2017/18 Flat and market driven organization along the value chain

Go-to-market Americas Middle East, CIS<sup>1)</sup> **Europe, Africa** Asia, Australia Divisions (Global P&L) Separately managed Power Energy Building Mobility Digital Process Siemens Financial Siemens and Gas Management Technologies (MO) Factory Industries Healthineers Gamesa Services Renewable (PG) (EM)(BT) (DF) and Drives (SFS) (PD) Energy Power Generation Services (PS) **Managing Board** 

H. Schwarz / PD SLN FI

**SIEMENS** 

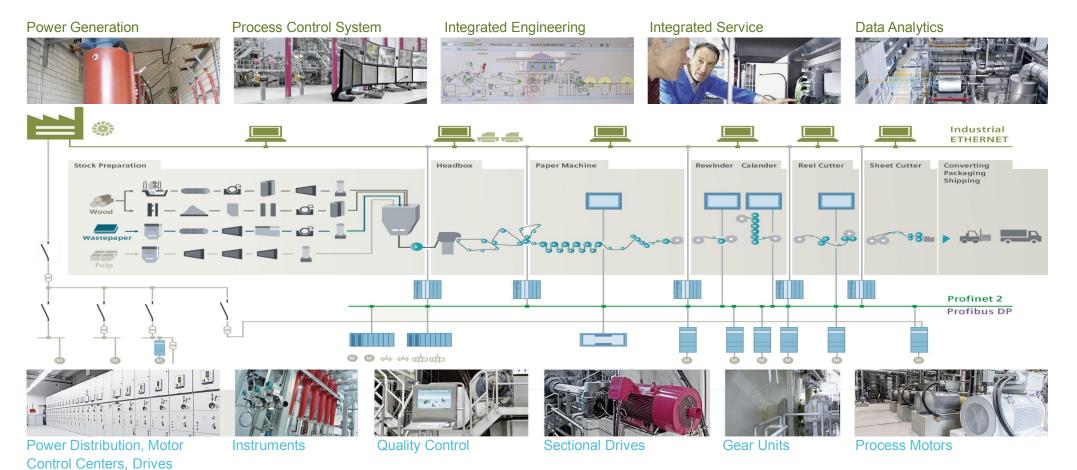
Ingenuity for life

# Siemens offers the most comprehensive portfolio for Process Industry and Drive



✓ PD SLN FI (P&P)

#### **Process Industry and Drive**


| Process Automation         Image: Second system (backware)         Image: Distributed control system (backware) and software) and plant engineering software         Image: Process instrumentation for flow, level, pressure, temperature, weighing and positioners         Image: Process analytics and analytical solutions | Large Drives<br>Low voltage motors and low voltage<br>converters<br>High voltage motors and medium voltage<br>converters<br>Motors, converters, control units and<br>gears for traction, including rail, hybrid<br>drives and mobile mining | Mechanical Drives (Separate)         Image: Separate of the second seco | <ul> <li>Process Solutions</li> <li>Closed ring power system (drilling)</li> <li>BlueDrivePlusC™ diesel electric propulsion system (drilling and marine)</li> <li>Pipeline solutions</li> <li>Tankfarm &amp; refinery solutions</li> <li>Fiber-, mining- and cement industry</li> </ul> |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Wired and wireless industrial communication, rugged communication</li> <li>Industrial identification</li> <li>Industrial power supplies</li> </ul>                                                                                                                                                                    | <ul> <li>Wind generators</li> <li>Products, solutions and systems<br/>for cranes</li> <li>Hydrogen solutions</li> </ul>                                                                                                                     | parts<br>Irive systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Systems and solutions</li> <li>Off shore &amp; on shore production solutions</li> </ul>                                                                                                                                                                                        |  |  |
| Portfolio for cement.                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                             | e services<br>rage, glass & solar, marine, mining, oil & gas, pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | narmaceuticals, water                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |  |  |

Restricted © Siemens AG 2018

Page 4 2018-05

H. Schwarz / PD SLN FI

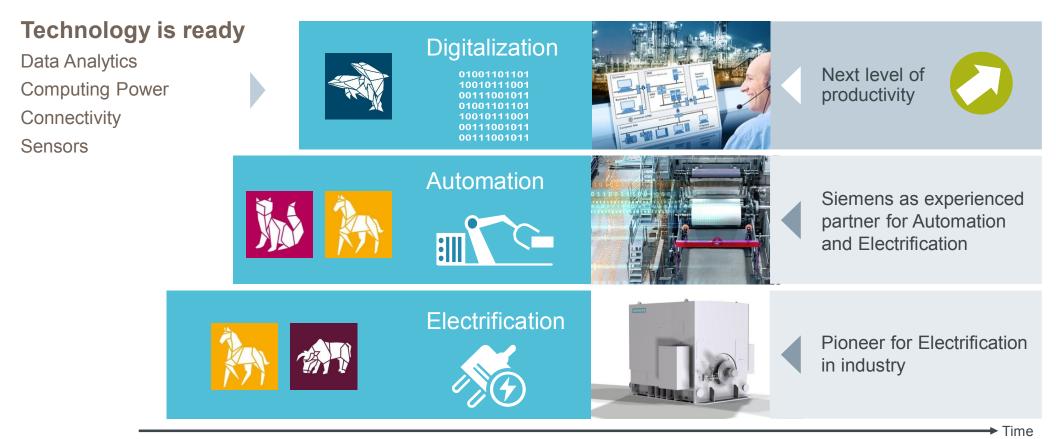
# Fiber Industry – a Process Industry demanding integrated solutions and a complete product portfolio



**SIEMENS** 

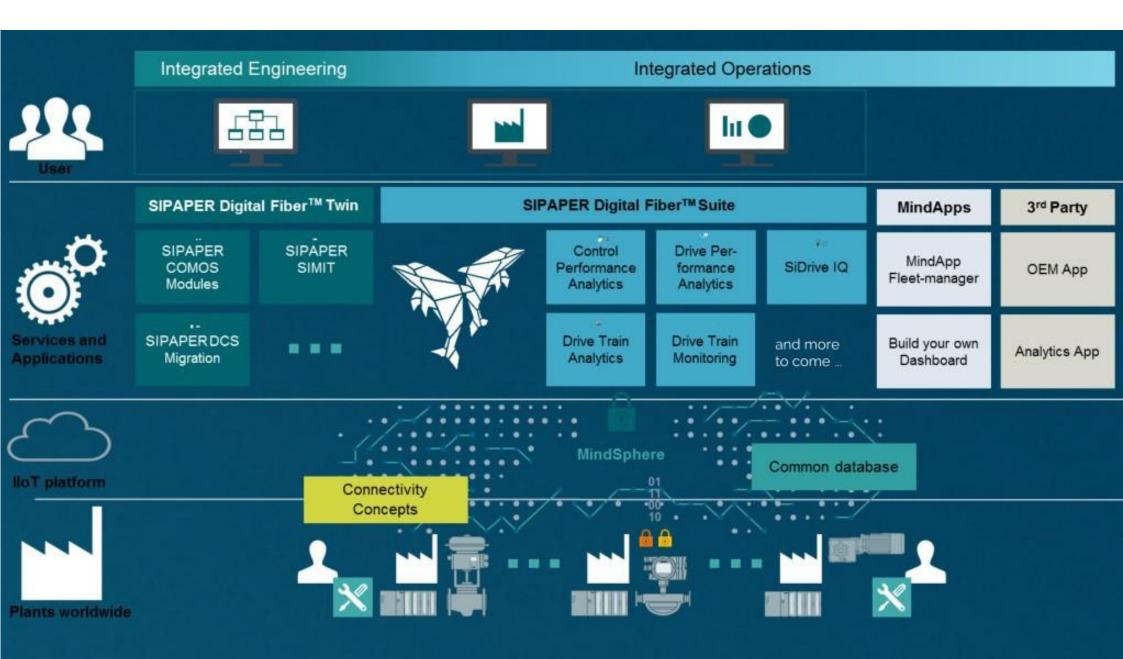
Ingenuity for life

# Driving the Digital Enterprise in the Fiber Industry – with SIPAPER!




| The SIPAPER Portfolio                                          |                                                                  |                                                   |                               |                       |  |  |  |  |
|----------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|-------------------------------|-----------------------|--|--|--|--|
| World-class products                                           | d-class products + perfectly matching, industry-specific modules |                                                   |                               |                       |  |  |  |  |
| <b>Drive Technology</b><br>SINAMICS, SIMOTICS, FLENDER, .      | SIPAPER<br>Drive Systems                                         | SIPAPER<br>Process Automation                     | SIPAPER<br>Power Distribution | SIPAPER<br>Operations |  |  |  |  |
| Industrial Automation<br>SIMATIC, SIPLUS,                      | SIPAPER Drives APL<br>SIPAPER Winder APL<br>FLENDER Gear Units   | SIPAPER DCS APL<br>SIPAPER QCS APL<br>SIPAPER DPO | SIPAPER Power                 | SIPAPER Services      |  |  |  |  |
| Energy Management<br>SIMOCODE, SIVACON, SIPROTEC,              | for SIPAPER                                                      | SIPAPER PPA                                       |                               |                       |  |  |  |  |
| Industry Services<br>Life Cycle Services, Plant Data Services, |                                                                  |                                                   |                               |                       |  |  |  |  |
|                                                                | Integrated SIDAL                                                 | DED Colutions                                     |                               |                       |  |  |  |  |

Integrated **SIPAPER** Solutions


# Digitalization is the next level to yield productivity in the process industry



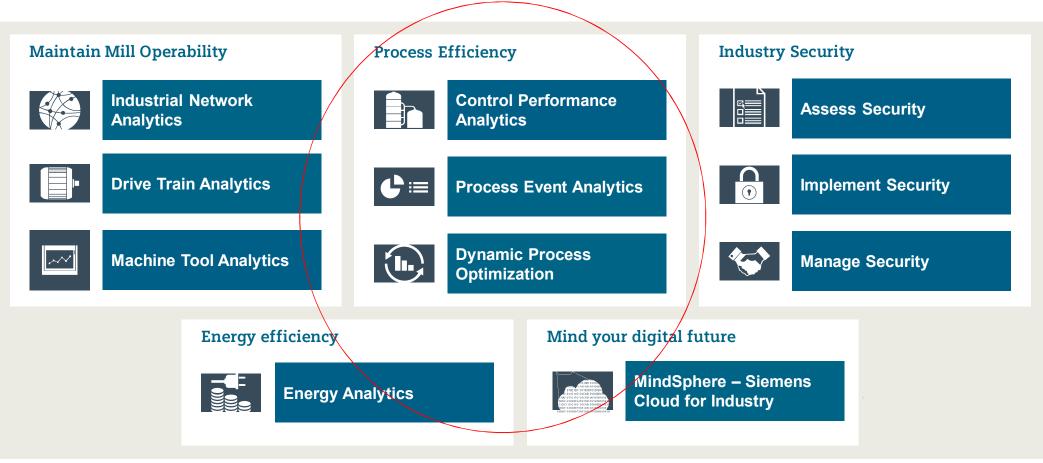


Restricted © Siemens AG 2018 Page 7 10/29/2018

Schwarz / PD SLN FI PPM

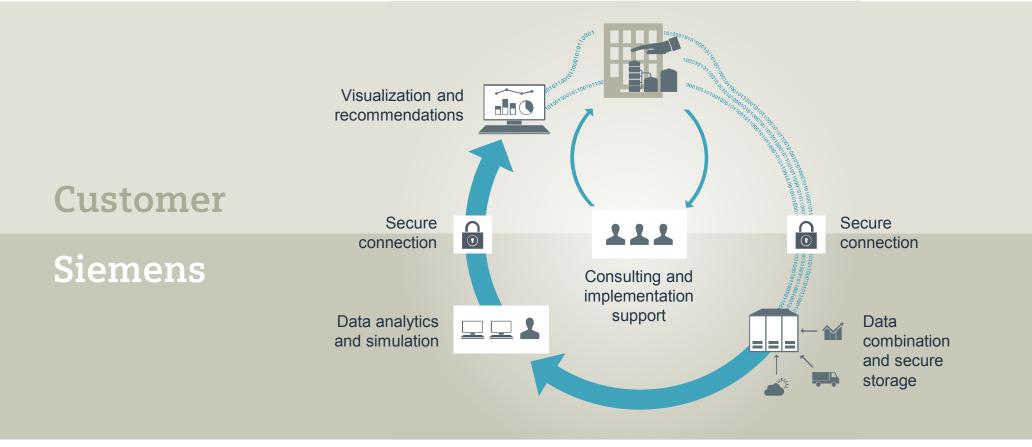





# Agenda

| 1  | Smart Controls                                             |
|----|------------------------------------------------------------|
| 2  | Dynamic Process Optimization (Advance Process Control APC) |
| 2a | SIPAPER Bleach and Flotation (DIP)                         |
| 2b | SIPAPER Dry Sec                                            |
| 5  | Outlook                                                    |

H.Schwarz / PD SLN FI

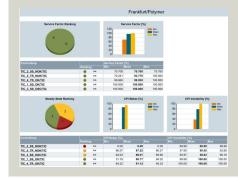

#### **Siemens SIPAPER Optimization**





### **Cost Efficiency through a Managed Service Approach** Process Data Analytics

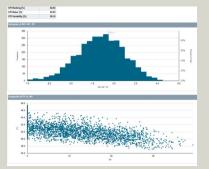





# Optimized process based on transparent control performance



# Process Data Analytics


#### **Performance Reporting**

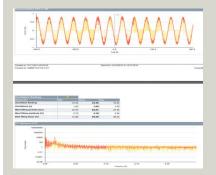


- Long-term plant overview on control performance of all control loops
- Visualization of important indicators for prioritized optimization actions
- Stiction\* recognition KPI
- Analytics of historic data from 3<sup>rd</sup> party DCS

\* static friction

#### **Characteristics Reporting**

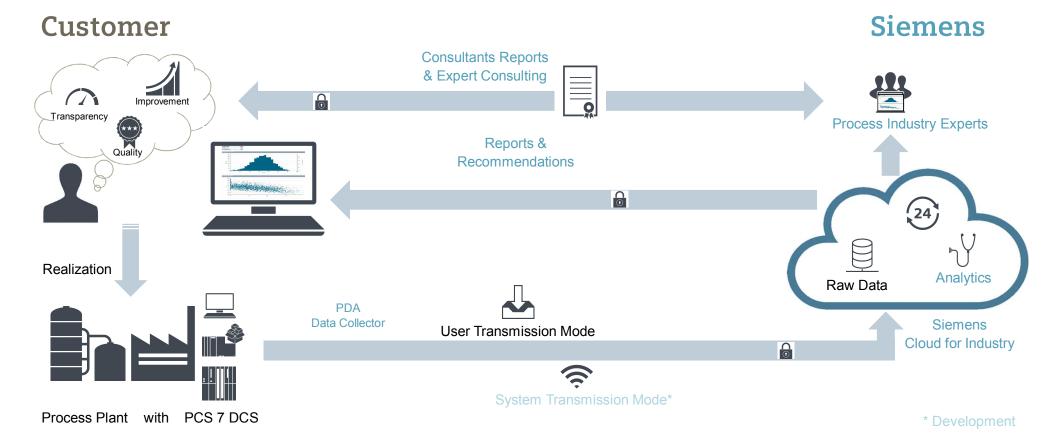



- Detailed information on control performance of each single loop
- Detailed KPIs for varying time frames
- Visualizes process data and characteristic diagrams like scatterplot, FFT spectrum, cross correlation for stiction recognition etc.

#### **Optimization Reporting**



Optimized control parameter for increased control loop performance


#### Consultants Report



Provides expert statements about the performance of individually analyzed control loops on request

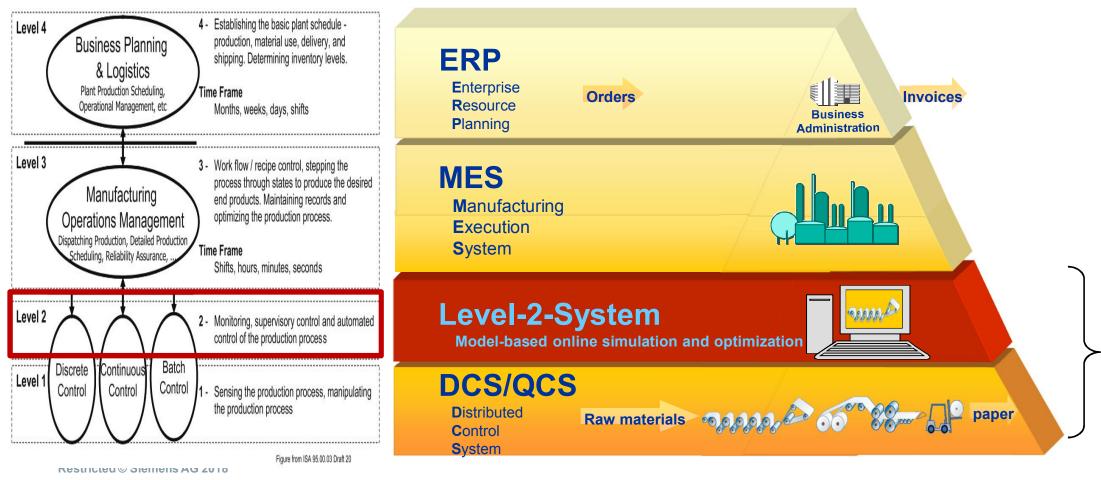
# **Continuous Process Improvement with Siemens** Process Data Analytics










# Use Case: Asset and Process Performance Control Performance Analytics



- Only 50% of control loops are well tuned
- Siemens Control Performance Analytics is a cloud-based service that collects control loop data in an anonymized form via secure data connection and provides detailed reports and suggestions for implementation
- Successful installations in pulp and paper mill in China

Hofmann / PD SLN FI PPM

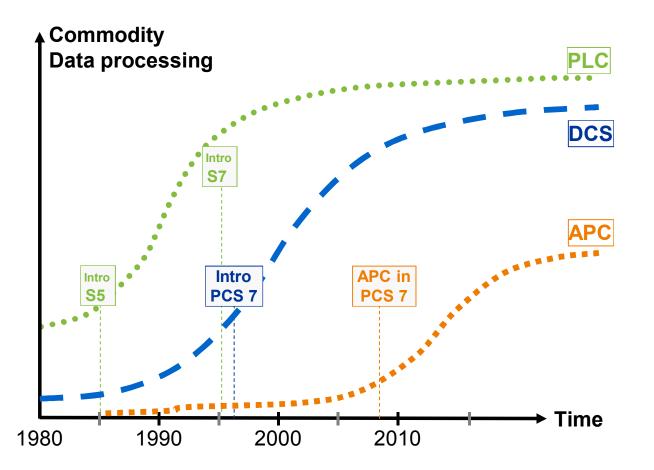
### Automation Hierarchy ISA 95 Level Definitions



Page 15

2016-06

H. Schwarz / PD SLN FI


**Production Control Level** 

SIEMENS

Ingenuity for life

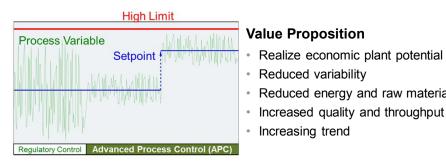
# APC is more and more becoming commodity





## The right tool for the right job: Improved Process Control through embedded APC

Realize economic plant potential


Reduced energy and raw material

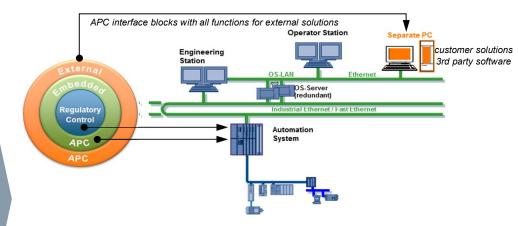
Reduced variability



#### Industrie 4.0 use case – Optimizing operation: Embedded APC with SIMATIC PCS 7

#### **Initial situation**




#### Challenges

#### Low barrier for small applications

- Sophisticated functionality for large applications
- · Standardized across the company with central support
- · High availability and same look and feel in operation
- Reduced cost of technology (design, implementation)
- Low lifecycle cost (e.g. Migration, transfer to other units)
- Low training expense

Restricted © Siemens AG 2018

#### **Full flexibility**



#### Value-add

- Powerful controllers allow more embedded functionality and capabilities
- Set of functionalities available depending on application: .
  - PID Tuner
  - · Gain scheduling, override control, disturbance compensation, Smith Predictor
  - Model Predictive Control (MPC (4x4) or MPC10x10)
  - · APC interface blocks with watch dog, central switch-over, etc.
- Control- and equipment modules (CM, EM), unit templates with APC

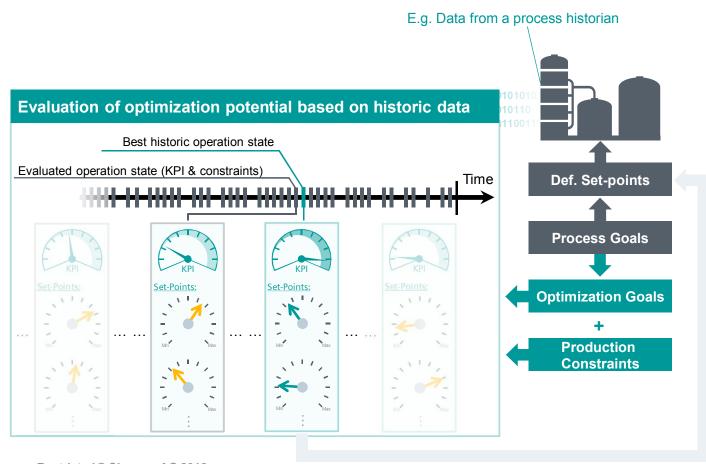
| Variations                   |                                 |  |  |  |  |  |  |  |
|------------------------------|---------------------------------|--|--|--|--|--|--|--|
| Separate<br>PC<br>(External) | DCS<br>integrated<br>(Embedded) |  |  |  |  |  |  |  |
|                              | ✓                               |  |  |  |  |  |  |  |
| ✓                            |                                 |  |  |  |  |  |  |  |
| ✓                            |                                 |  |  |  |  |  |  |  |
|                              | ✓                               |  |  |  |  |  |  |  |
|                              | ✓                               |  |  |  |  |  |  |  |
|                              | ✓                               |  |  |  |  |  |  |  |
|                              | ✓                               |  |  |  |  |  |  |  |

What is DPO in principle?

Data driven set-point optimization for Process industries and Batch processes

Limited Changing varying asset resources requirements properties Complex system / local **Bad Control** Model generation Loops based on process 00101 Data (via OPC) Partial process Def. Set-points **Optimization (Recipie)** Set-point options **Optimal set-point** Process goals **Optimization Goals** ÷ **Production** Set-point Constraints Min Max

DPO Process


Restricted © Siemens AG 2018 Page 18 29.10.2018

siemens.com/process-data-analytics

SIEMENS

Ingenuity for life

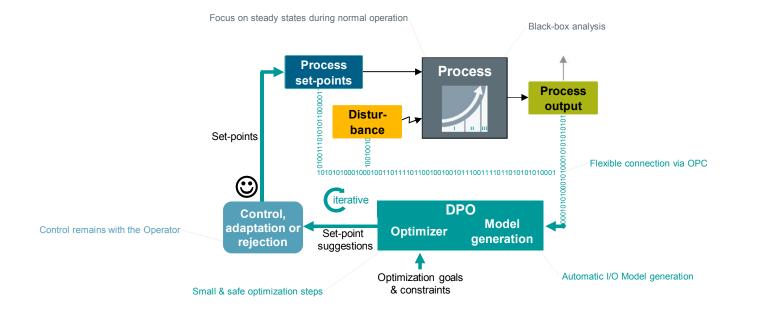
# **DPO Historic** Evaluation of optimization potential based on historical data





#### <u>Value</u>

- Identification of the best historic operational state based on the selected performance index (KPI) that fulfills all production constraints
- Evaluation of optimization potential
- Verification of the optimization approach


Restricted © Siemens AG 2018

Page 19 29.10.2018

siemens.com/process-data-analytics

## **DPO Live** Universal, iterative & data-driven economical optimization





#### DPO optimization steps overview

- 1. Collection of measurement data
- 2. Model generation of the stationary operation state
- 3. Optimization regarding a selected optimization goal in compliance with all process constraints
- 4. Generation of a new set-point suggestion
- 5. Adoption or adaption of the set-points
- 6. Continue with 1. until the optimization goal is achieved

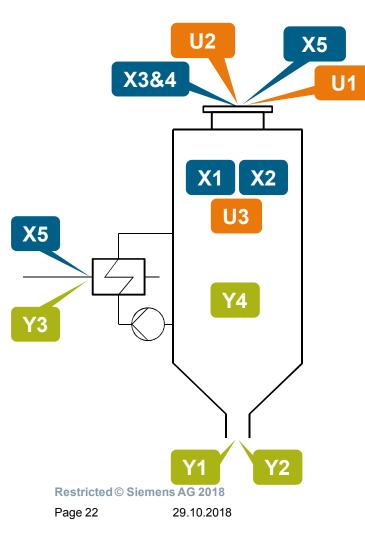
Restricted © Siemens AG 2018

Page 20 29.10.2018

# **Dynamic Process Optimization** Universal & Data-Driven Optimization



| <ul> <li>Conomic optimization focus</li> <li>Objective Performance &amp; optimization transparency</li> <li>Low application pre-requirements</li> <li>Directly applicable optimization results</li> </ul> | <ul> <li>Effective, simple, quick</li> <li>Cost effective</li> <li>During normal operation in steady state</li> <li>No retrofitting</li> <li>Improvements after few iterations</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Safe asset optimization                                                                                                                                                                                   | Flexible usability                                                                                                                                                                        |
| <ul> <li>Checks before applying changes</li> <li>Compliant to all process constraints</li> <li>Incremental optimization in small &amp; controlled steps</li> </ul>                                        | <ul> <li>For almost all processes<br/>with steady states</li> <li>Freely selectable optimization<br/>goal</li> <li>Data-driven</li> <li>Little effort for the operator</li> </ul>         |


#### Economical optimization of the stationary operation point based on selectable criteria

Energy – Throughput – Quality – Resources – Abrasion ...

Restricted © Siemens AG 2018 Page 21 29.10.2018

siemens.com/process-data-analytics

# Pulp Impregnation & Cooking Example



#### **Recipe parameters**

X1: Impregnation Pressure
X2: Cooking Pressure
X3&4: Amount of NaOH & Na<sub>2</sub>S
X5: Cooking Temperatures
X6: Quantity of raw material

#### Influences

- U1: Raw Material quality properties (Humidity, type, temperature)
- U2: Concentrations of NaOH & Na<sub>2</sub>S
- U3: Input Temperatures of materials

#### **Process output**

- Y1: Cellulose (Paper) quality parameters
- Y2: Lignin remainder (KappaNr)
- Y3: Energy consumption
- Y4: Resource consumption

## SIEMENS Ingenuity for life

# Rough example!

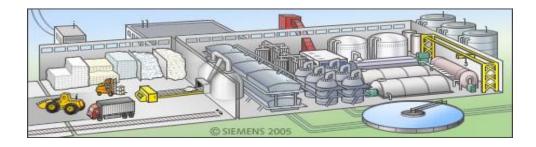
#### TODO: adapt, complete, verify

#### Potential Optimization Goals?

- Balance NaOH vs. Na<sub>2</sub>S
- Minimizing Operating Cost (Steam, Wood, Energy)
- Reduction in Chemical usage (NaOH & Na<sub>2</sub>S)
- Maximizing process throughput/ Batch sizes



# Agenda


| 1  | Smart Controls                                             |
|----|------------------------------------------------------------|
| 2  | Dynamic Process Optimization (Advance Process Control APC) |
| 2a | SIPAPER Bleach and Flotation (DIP)                         |
| 2b | SIPAPER Dry Sec APC Application                            |
| 5  | Outlook                                                    |

H.Schwarz / PD SLN FI

## Challenges and potentials in paper making Overview

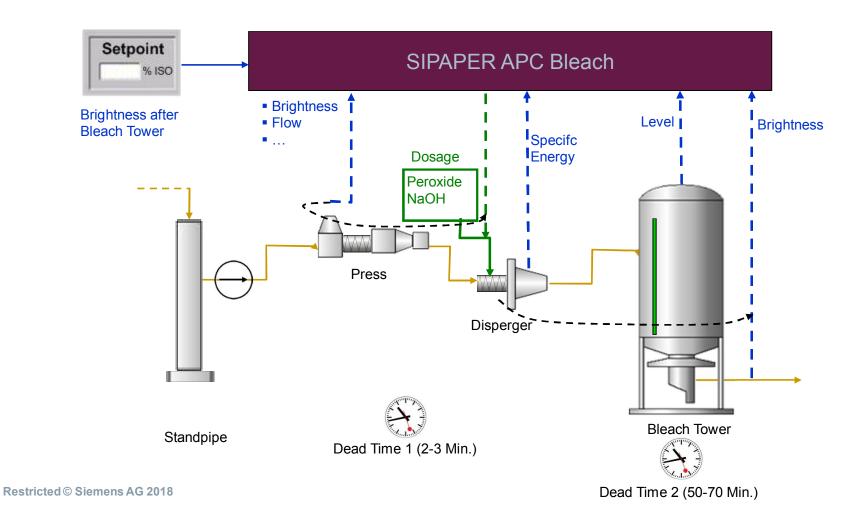


- Stability and flexibility in process control of line
- Stable brightness on a high level
- Reduction of chemicals
- Smooth run of the DIP
- Minimization of reject loss in Pre- and Postflotation
- Balanced Ash content in DIP



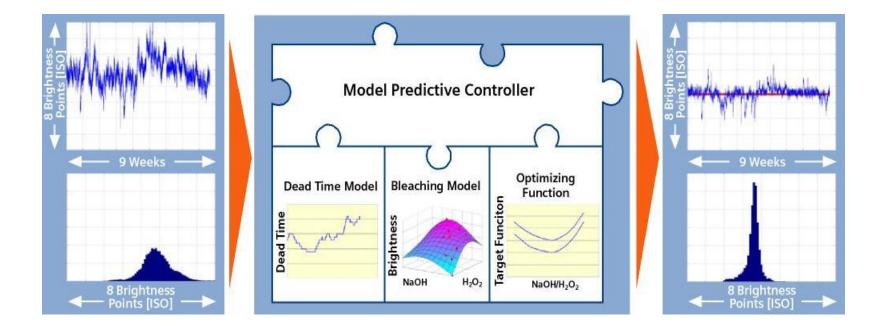
SIPAPER Bleach

SIPAPER Flot

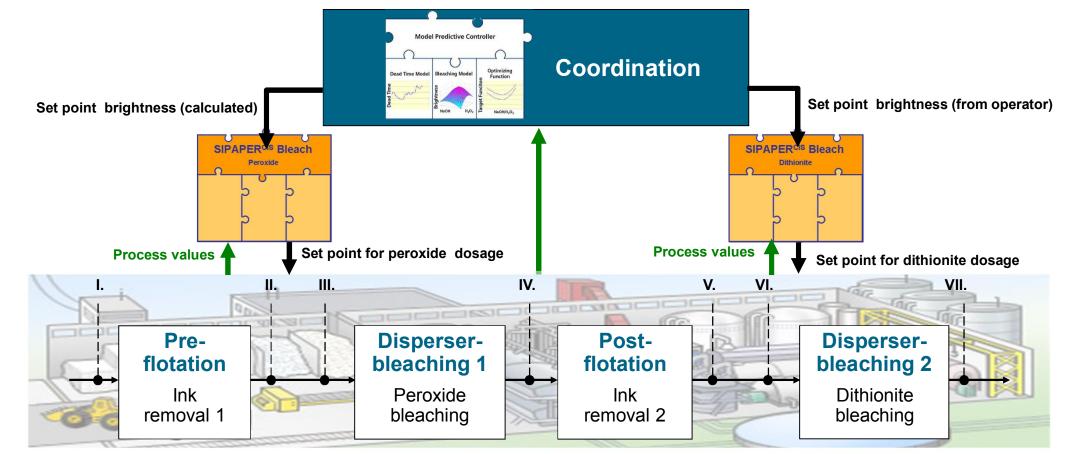

### Challenges and potentials: Stable brightness on high a level

VI. VII. 1.11 111. IV. V. dispergerdispergerprepostflotation bleaching 1 bleaching 2 flotation Peroxide Dithionite Ink Ink removal 2 bleaching removal 1 bleaching Operation mode Operating mode Energy consumption Energy consumption Deinking chemistry Chemical dosage Deinking chemistry Chemical dosage Fiber losses / reject Fiber losses / reject 70 Target: 65 Achieving desired brightness: Brightness [ISO] 60 accurately • at minimum cost Dispergerbleaching 2 55 Post-flotation Dispergerbleaching 1 50 Pre-flotation 45 Pos. I Restricted © Siemens AG 2018 Pos. III Pos. IV Pos. VI Pos. VII




### **SIPAPER APC Bleach – Example for oxidative Bleaching step**

SIEMENS Ingenuity for life




# SIPAPER APC Bleach – Reliable quality with optimized chemical consumption





### **SIPAPER APC Bleach – Coordination of two bleaching stages**



SIEMENS

Ingenuity for life

#### **Overview Face Plate Flotation area of the DIP**

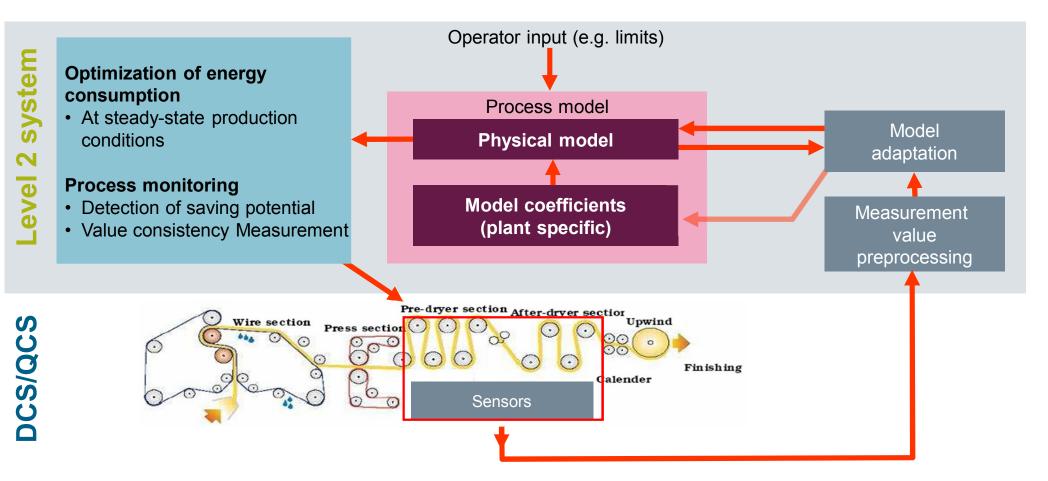


| Allgemein W                           |        | 3        |              | -                  | T.     |          | 10    |                               |                    | PM Serve  |                       |            | M_Server02                |
|---------------------------------------|--------|----------|--------------|--------------------|--------|----------|-------|-------------------------------|--------------------|-----------|-----------------------|------------|---------------------------|
| Flotation ·                           |        | 8        | AP_Feinso    |                    | -      |          | 0     |                               | 5 Q                |           |                       |            |                           |
| Häfsstoffe                            |        | 3        | AP_Spen      | Wasser             | -      |          | 10    |                               |                    | PM_Serve  |                       |            | P_Server01                |
|                                       |        | 8        |              |                    |        |          | 10    | Diagnose                      | • U                | AP_Server | 102 🚺 W               | 5          |                           |
| Level-E VI                            | IRBRAU | CH       |              |                    |        |          |       |                               |                    |           |                       |            |                           |
|                                       |        |          |              |                    |        | -        | -     | Level-2                       | _                  |           |                       |            | vel-2 Kopplun             |
| -                                     |        |          |              |                    |        |          |       | Level-2                       |                    |           |                       | E.         | Sector Sector Development |
|                                       |        |          |              |                    | -      |          |       |                               |                    |           |                       |            | E                         |
| Level-2 Kopp                          | lung   |          | Schaumrinnen | hõhe Sekunda       | rzelie | e Vorfio | tatio | n                             |                    |           |                       |            |                           |
|                                       | Ister  |          | aktueller    | Eingabe<br>Maßstab |        |          |       | Repete                        | Eingabe<br>Maßsteb | Zwischen- | Eingabe<br>Gewichtung | Solvert    | Sollwort                  |
|                                       |        | -0.<br>- | Mittelwort   | Bewertung          |        | litteiwe |       | - Colorent                    | Bewertun           | Solwert   | [0.103]               | Lovol2     | PLS                       |
| \$3.1532/L2H4I                        |        |          |              | 58.0               | Г      | 0.0      | ō     | sate hoch                     | 33.5               |           |                       | OVORW      | AHL LEVEL2                |
| Weiterad                              | -      | _        | Provide la   | 57.0               |        | 0,0      |       | hech / hoch                   | 33,0               |           | 1000                  | 1.0        |                           |
| Standrohr 1                           | 55     | 7        | 55,8         | 56,5               |        | 0,0      |       | mitel mitel                   | 32,5               |           | 50,0 *                | 1          |                           |
|                                       |        |          |              | 56.0               | lŀ     | 0,0      |       | sehr niedrig                  | 32,0               |           |                       |            |                           |
| BEL15027628140                        | -      | -        | <u> </u>     | 5.0                | H      | 0.0      | -     | setwhoch setwhoch             | 33.0               | _         |                       | -          |                           |
| WeiSchub-Differenz                    |        |          |              | 4.0                | lŀ     | 0,4      | -     | hech hoch                     | 33,0               |           |                       |            |                           |
| Gutstoff Sok.zellon<br>(Ableorturm 2) |        | 6        | 4.6          | 3,0                |        | 0,0      |       | mittel + mittel               | 32.5               | 31.7      | 5,0 *                 |            |                           |
| zu Standrohr 1                        | 1      | 1000     | 124          | 2.0                | IE     | 0,0      |       | niedrig / 💘 niedrig           | 32.0               |           | 10. (Mess)            | FR15324.2M | -                         |
|                                       |        | _        |              | 1.0                |        | 0.0      | 0     | sehr niedrig / * sehr niedrig | 31,6               |           |                       | 32.8       | * 34.0 *                  |
| 50.45324.2F43                         |        |          |              | 58,0               |        | 0,0      |       | sehr hoch                     | 33,5               |           |                       | 25         | 15324.8VEL283             |
| Rejektmenge                           | 55     | T.       | 53.4         | 56.0               | IF     | 0.0      |       | nitel hoch                    | 33.0               |           | 50.0 >                |            |                           |
|                                       | 1      | -        |              | 52.0               | It     | 0.       |       | niedrig niedrig               | 32.0               |           |                       | ]          |                           |
|                                       |        |          |              | 50.0               |        | 0,0      | 0     | sahr Nachig / sehr niedrig    | 31,5               |           |                       |            |                           |
| 2013532A2844                          |        |          |              | 42,0               | [      | 1,       |       | setwhich setwhich             | 33,5               |           |                       |            |                           |
| Zelionhöho                            |        | -        | -            | 40,0               |        | 0,0      | - 1   | nech roch                     | 33.0               |           |                       |            |                           |
| Sok.zelion<br>Vorflotation            | 45     | .4       | 45.8         | 38.0<br>36.0       |        | 0.0      | -     | mittol mittol                 | 32.5               |           | 5.0 *                 | 1          |                           |
|                                       |        |          |              | 34.0               |        | 0,0      |       | sehr niedtig                  | 31,5               |           |                       |            |                           |
|                                       | 1.1    | -        | 1            | le de              | 11576  |          | 22    |                               |                    |           | S                     | Ż.         |                           |
|                                       |        |          |              |                    |        |          |       |                               |                    |           |                       |            |                           |
|                                       |        |          |              |                    |        |          |       |                               |                    |           |                       |            |                           |
|                                       |        |          |              |                    |        |          |       |                               |                    |           |                       |            |                           |
|                                       |        |          |              |                    |        |          |       |                               |                    |           |                       |            |                           |

#### Target:

- Ash content balance
- accurately
- optimized chemical
- consumption
- at minimum cost
- optimized reject discharge
- less fiber losses




# Agenda

| 1  | Smart Controls                                             |
|----|------------------------------------------------------------|
| 2  | Dynamic Process Optimization (Advance Process Control APC) |
| 2a | SIPAPER Bleach and Flotation (DIP)                         |
| 2b | SIPAPER Dry Sec APC Application                            |
| 5  | Outlook                                                    |

Restricted © Siemens AG 2018 Page 30 2018-05

H.Schwarz / PD SLN FI

## SIPAPER APC DrySec – Drying Section optimization



SIEMENS Ingenuity for life

# SIPAPER APC DrySec Energy saving potentials in dryer section



- Vary of steam pressures of the steam groups
- Optimize use of flash steam

#### Hood supply air

- Reduction of the amount of leakage air
- Reduction of the amount of supply air
- Optimal relation between (exhaust) air temperature and dew point

#### Heat recovery system

Improved heat recovery by increasing moisture in exhaust air

#### Condensate

Improved heat removal from the condensate



# **SIPAPER APC DrySec – Typical optimized set points**



#### Exhaust Air

Amount (Flow rate)

#### **Steam and Condensate:**

 Steam Pressure in all Steam Groups excluding Main Steam Group (Main Steam Group is calculated by QCS)

# Steam groups in Size Steam groups in pre dryer section after dryer section press

#### **Hood Supply Air**

- Amount (Flow rate)
- Temperature

# SIPAPER APC DrySec What is modelled ?



Paper drying process in the dryer hood Mass and energy balance Paper properties before and after each cylinder Influence of hood air onto the drying process Influence of leakage air Calculation of dew points of the hood air Steam and condensate system (Cylinders, Separators) Mass and energy balance Heat recovery system (heat exchangers) Mass and energy balance Amount of energy recovered dependent of exhaust air properties

## SIPAPER APC DrySec Physical Process Model

 $D_{i}$ 

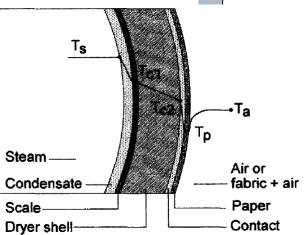
+**B**-\_\_\_\_

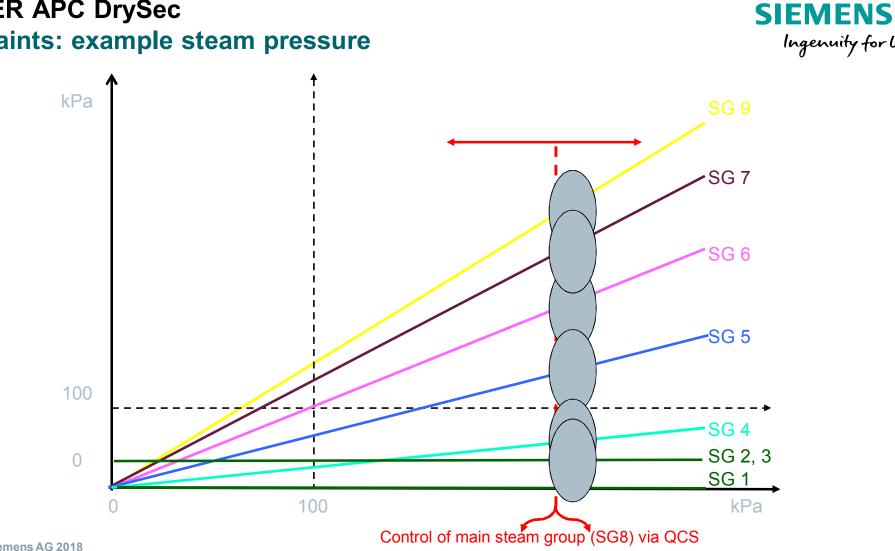
+

D

 $\overline{D_H}$ 




nüssen in Summe gleich der für die Verdampfungsrate m(x,t) benötigten rerseits zusammensetzt aus der Verdampfungswärme  $r_p$  (pro Flächen- und Zeitie zur Erwärmung des Dampfes von der Papier-Oberflächentemperatur auf die ndig ist:

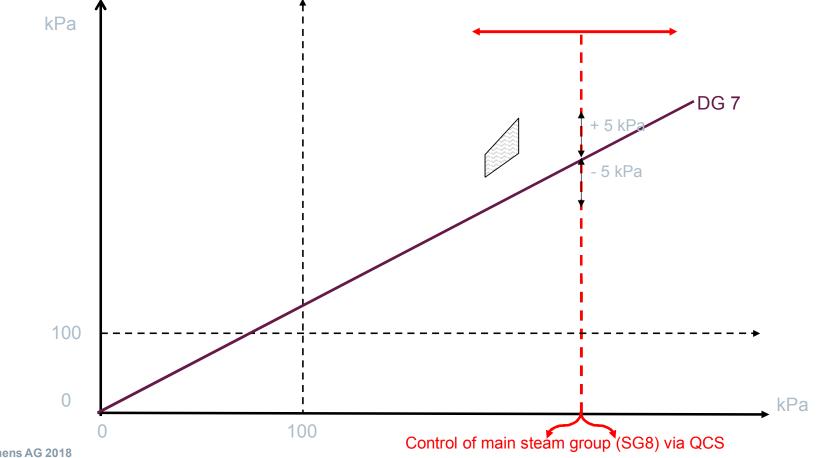

$$(r_{P}(T_{P}(x,z,t),u(x,t)) + c_{V} \cdot (T_{H}(x,z,t) - T_{P}(x,z,t))), \quad 0 \le x \le L_{c}, \\ z = 0, d_{P}(x,t), t > 0.$$
 GI. 17

zw. *m*<sub>o</sub> (nachfolgend zusammenfassend mit *m* bezeichnet) von der Papierbahn-Haubenluft genügen der Stefangleich

$$m(x,t) = \frac{\beta \cdot M_{w} \cdot p_{tot,H}}{R_{g} \cdot (T_{H}(x,z,t) + T_{p}(x,z,t))/2} \log \left(\frac{p_{tot,H} - p_{V,H}(x,t)}{p_{tot,H} - p_{V,P}(x,z,t)}\right)$$

In Gl. 18 bezeichnen  $\beta$  den Massetransferkoeffizienten,  $M_W$  die samtdruck in der Trockenhaube,  $p_{V,H}$  den Wasserdampf-Partial Gaskonstante,  $T_H$  die Haubentemperatur und  $p_{V,H}$  den Wasserda






# SIPAPER APC DrySec **Constraints: example steam pressure**

Ingenuity for life

# SIPAPER APC DrySec Constraints: example steam pressure





# SIPAPER APC DrySec Summary



Detailed physical process model as basis of calculation

#### Mathematical optimization algorithm

- ➔ Minimizing consumption of fresh steam
- → Minimizing energy consunption of fans

#### Transfer of optimized setpoints to the DCS

- → hood supply air (amount and temperature)
- → steam pressure
- → ...

#### Typical saving of fresh steam: 2% and 5%

- → depending on plant configuration
- → average savings of existing installations



#### Outlook

| 1 | With smart control optimization works very efficient                         |
|---|------------------------------------------------------------------------------|
|   |                                                                              |
| 2 | Becomes more flexible with higher hardware performance                       |
|   |                                                                              |
| • |                                                                              |
| 3 | Trend moves to off line solution                                             |
|   |                                                                              |
| 4 | Mindenhere, aloud based onen platform                                        |
| 4 | Mindsphere, <i>cloud based open platform</i>                                 |
|   |                                                                              |
| 5 | Optimization beyond start up leads to gap to integrate smart control systems |
| 5 | optimization beyond otalt up loade to gap to integrate other objection       |

H.Schwarz / PD SLN FI





Unrestricted © Siemens AG 2018

siemens.com/sipaper

Dr. Hermann Schwarz Product Manager Technology PD SLN FI PPM Werner-von-Siemens-Str. 60 91052 Erlangen Germany Phone: +49 9131 7-42917 Mobile: +49 173 7031762 E-mail: hermann.hs.schwarz@siemens.com

**SIEMENS** 

Ingenuity for life