

Barrier Coating of Paperboard

Samir Kopacic^a, Andrea Walzl^b, Armin Zankel^c, Rudolf Kniely^a, Erich Leitner^b and Wolfgang Bauer^a

alnstitute of Paper, Pulp and Fiber Technology, Graz University of Technology bInstitute for Analytical Chemistry and Food Chemistry, Graz University of Technology cInstitute for Electron Microscopy and Nanoanalysis, NAWI Graz, Graz University of Technology and Centre for Electron Microscopy

IPZ

Overview

- Challenge and Opportunity
- Barrier Materials
- Coating Trials

IPZ

2

- Characterisation and Barrier Performance
- Summary and Outlook

Challenge and Opportunity

Consump tion

Collectio

Raw material

Demand for plastic in Europe is around 50 million tons/year Nearly 40 % are for Thermoplastic Packaging, Coatings and Additives

- Testing and evaluation of potential barrier biomaterials for paper based packaging
- Replacement of synthetic barriers
- Utilization of existing coating technology used in paper and packaging industry (<u>film press</u>, curtain coater, size press)

IPZ

Literature Studies

Type of barrier:

IIPZ

5

- Oil/grease
- Gas (Oxygen, Air)
- Water
- Water vapour
- <u>Aroma</u>
- <u>Mineral Oil</u> (MOSH and MOAH)

Biopolymer and biocomposite coated paper

Vibhore Kumar Rastogi et. al (2015). Coatings, 5, 887-930.

Our Approach

Barrier Coating of Paperboard 11/2018

LIPZ

Materials – Raw (Uncoated) Paperboard

SF – 100 % recycled fiber - unsized PF – 100 % virgin fiber - (starch) sized

RP - PF

Surface Characterization

Scanning Electron Microscope (SEM)

LIPZ

8

Surface Characterization

Scanning Electron Microscope (SEM)

Coated Paper – Primary and Secondary Fibre

Surface Characterization

Scanning Electron Microscope (SEM)

Coated Paper – Primary and Secondary Fibre

Thickness and Penetration LIMI + Microtome (IPZ)

<u>з</u>і µт

LIPZ

11

PF Uncoated

SF Uncoated

Barrier Coating of Paperboard 11/2018

SF + Chitosan

SF + Alginate

LIPZ

Barrier Thickness (SEM+M) PF Paper + Chitosan

PF Paper + Chitosan

SEM + Microtome

Barrier Thickness = <u>3,2 µm</u> *scale

Grease Resistance vs. Air Permeability

Primary vs. Secondary Fiber

Probe

SF-coated

LIPZ

13

KIT > 5 with Cht, Alg

> PF-coated

KIT = 12 with Cas, Ref.1, Ref.2, SP, Alg

KIT No.	Grease resistance
1,2	Extremely low
3,4,5,	Medium to high
11,12	Very high resistance

Water Vapor Transmission

Primary vs. Secondary Fiber

LIPZ

14

Water Absorptiveness and Wettability Secondary Fiber

 Measurable Cobb 60s: Chitosan, SP and Casein

Barrier Coating of Paperboard 11/2018

LIPZ

15

Water Absorptiveness and Wettability Primary Fiber

LIPZ

16

Recycled Paperboard - Source of Mineral Oil

MOSH (mineral oil saturated hydrocarbons)

MOAH (mineral oil aromatic hydrocarbons)

Recycled Paperboard - Source of Mineral Oil

	Migration [%]	МОН [%]	MOSH [%]	MOAH [%]	Remainings [%]
Recycled uncoated paper	100	63.8 ± 0.1	57.8 ± 0.1	6.02 ± 0.16	36.2%
Alginate coated paper	16.3 ± 1.0	7.9 ± 0.25	5.49 ± 0.18	2.41 ± 0.42	8.4%
Chitosan coated paper	29.5 ± 1.6	9.16 ± 0.3	8.43 ± 0.2	0.73 ±0.34	20.3%

*remainings consist of substances with a retention time outside the range of C_{16} - C_{35} and substances subtracted from MOH e.g. DIPN

Summary and Outlook

Biomaterials for Barrier Coating

- Medium to high grease resistance
- Improved water vapor permeability and MO Migration/Permeation
- Hydrophilization and hydrophobization effects observed
- Multifunctional barrier properties (Chitosan, Alginate...)
- Film formation is not a prerequisite for good barrier properties
- Potential Barriers b Grease, Gas, Mineral oils...

Next steps

IIPZ

19

- Better understanding for paper-barrier interaction
- Application of film press
- Focus on 3-4 barrier materials and development of multi-component and multifunctional barrier formulations for packaging paper

Acknowledgements

The author acknowledge the Austrian Research Promotion Agency (FFG) and ÖZEPA

The author further acknowledge the industrial and scientific partners

- Heinzel Pulp Pöls
- Hamburger Pitten GmbH
- Mondi Group
- Smurfit Kappa
- Delfort Group
- ACFC (Erich Leitner and Andrea Walzl)
- IPZ (Wolfgang Bauer)
- FELMI (Armin Zankel)

Thank you very much for your attention!

