

BIOMASS OF COMMON REED AS A SOURCE OF FIBERS AND GREEN CHEMICALS

Maja FRELIH¹⁾, Janja ZULE¹⁾, Lorna FLAJŠMAN¹⁾, Ema FABJAN¹⁾, Blaž LIKOZAR²⁾, Brigita HOČEVAR²⁾

¹⁾Inštitut za celulozo in papir, Bogišićeva 8, 1000 Ljubljana ²⁾Kemijski inštitut, Hajdrihova ulica 19, 1000 Ljubljana

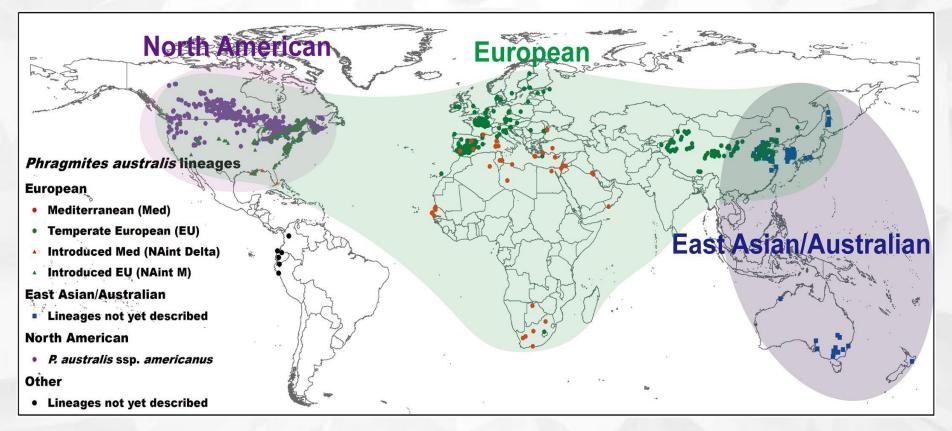
45th International Annual Symposium DITP, Bled 14.11.2018

Content

- ---> facts about LC biomass
- ---> common reed (*Phragmites australis*)
- ----> purpose of current research
- ----> characterization of reed biomass
- --> results
- -----> conclusion

LC biomass – alternative to fossil resources → renewable, biodegradable, recyclable

- ··· different classes of LC biomass
 - forest and wood processing residues
 - invasive and fast growing plants, grasses
 - agricultural residues
 - green cuttings
 - industrial residues
- --> important basic components in LC biomass
 - cellulose, hemicellulose, lignin, extractives, ash



Phragmites australis worldwide distribution

Worldwide areas covered by Common reed (area in ha)

Worldwide utilization of Common reed

- common reed is readily available LC biomass
 no cultivation and fertilization needed
- → <u>traditional uses:</u> construction (panels, isolation, roofs,...) animal food and litter, biofuel, water treatment plants, papermaking (3,3 – 3,5 tonnes of reed - 1 tonne of pulp for papermaking)
- → <u>new possibilities:</u> fibers, nanocellulose, bioplastics, advanced materials, "green" chemicals
- -----> common reed feedstock for biorefineries

Common reed (Phragmites australis)

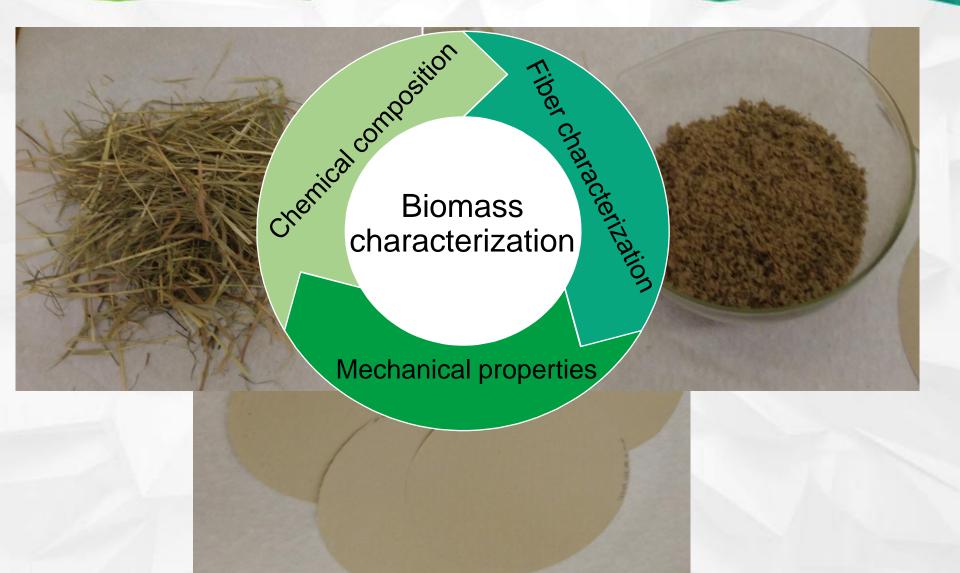
Large (2-4 m high) perennial fast growing grass found in wetlands throughout temperate and tropical regions of the world. Forms extensive stands (reed beds), which may be as much as 1 square kilometer or more in extent. Where conditions are suitable it can also spread at 5 metres per year.

Common reed with its high ability to spread is overgrowing large areas in different parts of Slovenia (Ljubljana Marshes, Lakes Cerknica and Slivnica, some locations near Prekmurje -Lendava).

Common reed (*Phragmites australis*) at the location of Lake Cerknica

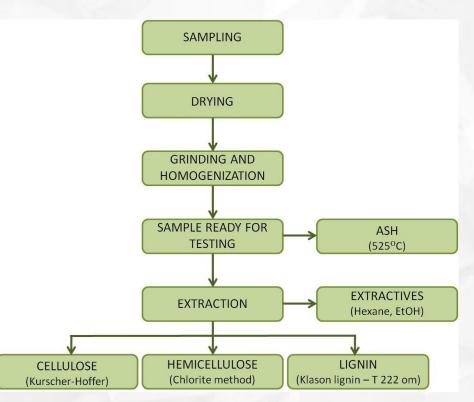
- --> native plant
- important for local preservation of endangered bird birds and insects
- → area of the lake 20km² 30 km² (2000 - 3000ha)
- → 300 ha / common reed
 (3000 5000 t/ biomass)
- --> looking for new potential uses

- fast spreeding has negative impact on biodiversity
- harvesting needed
- waste biomass alternative use ???


Aim of the research

- chemical characterization of reed from different locations in Slovenia (lake Cerknica – samples from late summer 2016, 2017 and 2018 and lake Slivnica samples from winter 2016)
- ---> laboratory delignification
- morphological and mechanical characterization of isolated fibers
- determination of its technological (papermaking) potential

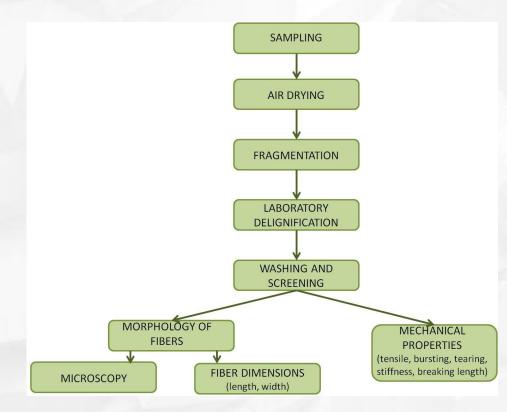
Reed biomass evaluation



PULP AND PAPER INSTITUTE, LJUBLJANA Innovative Cellulose Products

Chemical characterization

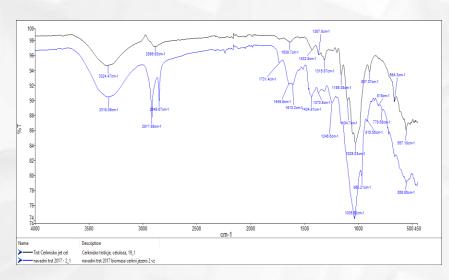
drying (18 – 20°C)


fragmentation (1 cm)

grinding (0,5 mm)

Parameter	Method
ash (525 °C)	ТАРРІ Т211
extractives (H, E)	ТАРРІ Т204
cellulose	Kürschner-Hoffer
hemicellulose	TAPPI T149-75
lignin	ТАРРІ Т222

Laboratory delignification

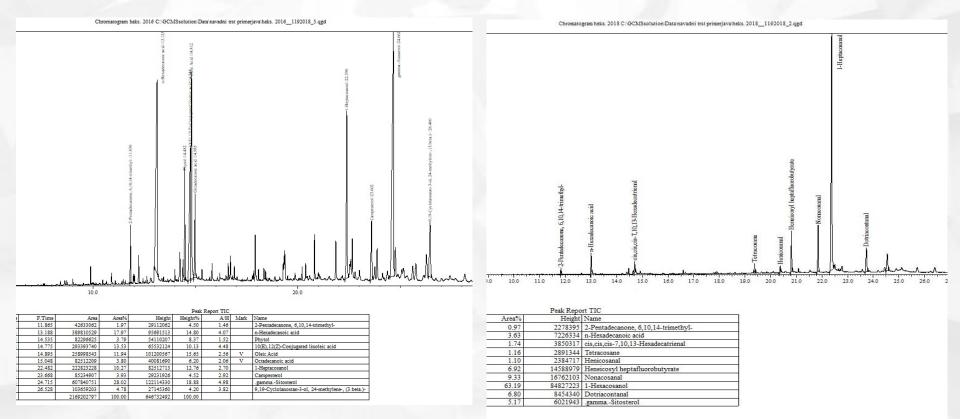


temperature	160 °C
time	90 minutes
reagent	18 % NaOH
liquid/sample	5:1
fiber dimensions	ISO 16065
breaking length	SIST EN ISO 1924-2
tearing index	SIST EN ISO 1974
bursting index	SIST EN ISO 2758
tensile index	SIST EN ISO 1924-2

Chemical composition

sample	ash %	extractives %	cellulose %	hemi- cellulose %	lignin %
REED	3,9 - 5,6	2,3 – 9,2	29 - 41	32 - 33	19 - 23
WOOD	< 0,5	3 - 4	40 - 45	25 - 35	20 - 30

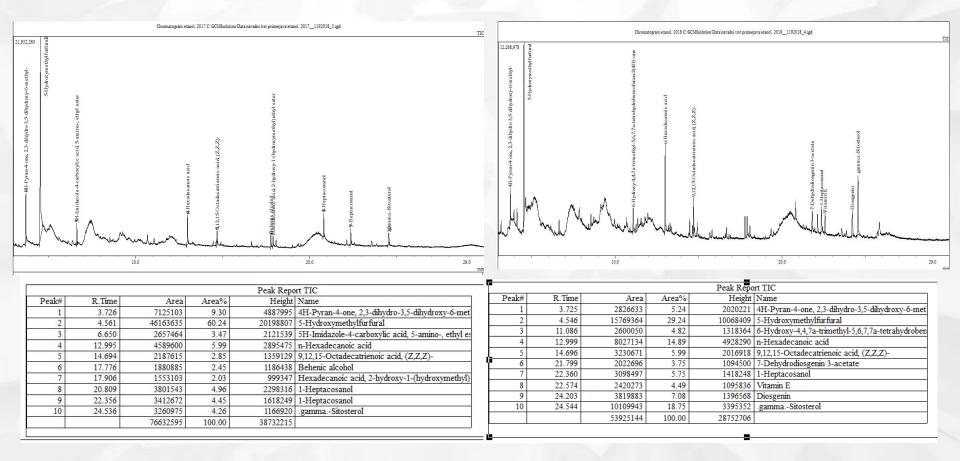
~ 30 % cell. Lake Cerknica ~ 40 % cell. Lake Slivnica


Extractives and hemicellulose

→ GC-MS analysis of <u>H and E extracts</u> (fatty acids and alcohols, hydorcarbons, sterols, sugar monomers, furfural,...)

→ HPLC analysis of acid hydrolysate (glucose from cellulose; xylose and arabinose from hemicellulose)

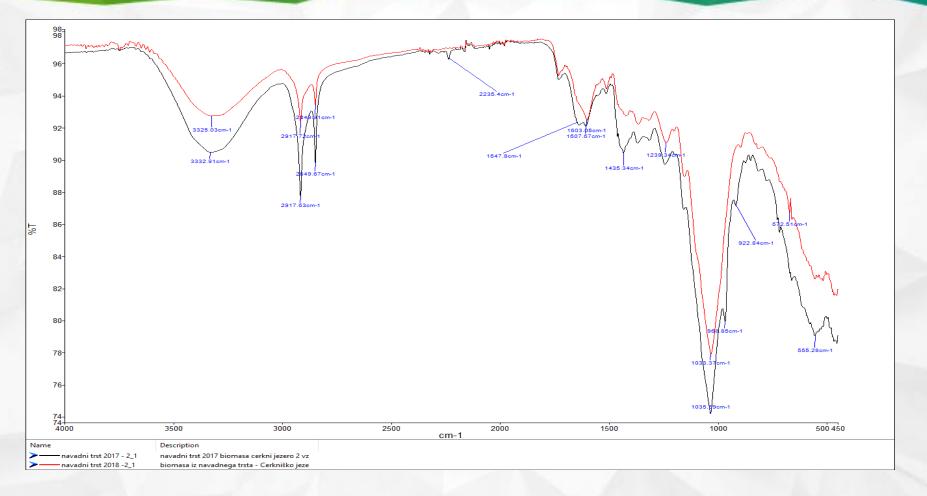
GC-MS analysis of Hexane extracts


Winter 2016

Late sumer 2018

*GC-MS analysis were done on Shimadzu SPL-2010Plus GC-MS chromatograph

GC-MS analysis of Et-OH extracts



Late summer 2018

Late summer 2017

PULP AND PAPER INSTITUTE, LJUBLJANA Innovative Cellulose Products

Diffrences in raw biomass FTIR spectra *

*All spectra were recorded on Perkin Elmer Spectrum Two FTIR spectrometer using ATR technique

Fiber properties - morphological

Microscopy

Average fiber dimensions

sample	length mm	width μm	CWT* µm
REED	0,68	15,4	3,3
softwood	3 - 6	25 - 45	2 - 5
hardwood	0,5 - 1,8	10 - 36	3 - 6

*CWT – cell wall thickness

* Fiber analysis were done on Valmet Fiber Image Analyzer model Valmet FS5

Fiber properties – mechanical

parameter/delig. method	NaOH	Kraft NaOH, Na ₂ S	Organosolv EtOH, H ₂ SO ₄
refining	/	PFI – 2000 rpm	PFI – 600 rpm
grammage, g/m ²	65,5	66,6	65,2
thickness, μm	98,6	133	135
breaking length,m	5658	3897	3527
tensile index, kN/m	55,5	38,2	34,6
tearing iindex, mNm ² /g	3,45	2,87	2,82
bursting index, KPam ² /g	3,62	1,99	1,46

Mechanical properties of non refined fibers are better compared to refined. Shortening of the fibers does not improve mechanical properties.

Evaluation of technological potential of reed

- --> delignification yield is ~ 30 %, ISO brightness 35
- fibers similar to hardwood fibers (short, good mechanical properties)
- simple pretreatment, easy delignification, low energy refining, good bleachability
- black liquor expected lignin and aromatic degradation products, carbohydrates, furfural, organic acids, extractives – challenge for future researches

Conclusion

- optimization of biomass processing necessary (time of harvesting, pretreatment processes, delignification, paper production)
- possibilities for treatment of the black liquor for introduction of zero waste technology and development of new materials and "green" chemicals
- → biorefinery concept for efficient use of reed biomass to be adopted (fibers, extractives, black liquor, energy...)
- ---> further intensive research still needed

Acknowledgements

The work was partly carried out within the RDI project Cel.Cycle: »Potential of biomass for development of advanced materials and bio-based products« (contract number: OP20.00365), co-financed by the Republic of Slovenia, Ministry of Education, Science and Sport and European Union under the European Regional Development Fund, 2016–2020.

