Innovation in dry strength additives
Content

- Reasons for using dry strength additives
- Basics of dry strength
- Dry strength agents by Kemira
- Case studies
- Summary
What are your drivers?
Value from investment in strength additives

Strength increase

Increase strength of paper board

Trade-off strength

20.11.2018
What are your drivers?

Value from investment in strength additives

Strength increase

Increase strength of paper board

- Quality upgrade
- Improved runnability
- Converting efficiency

Trade-off strength

- Fiber substitution with cheaper fibers, filler, ash
- Less chemicals (WSR, starch)
- Less refining (bulk, energy savings, less dust)
- Lower grammage (fibers & steam savings, faster speed)
Origin of strength: fiber – fiber bonds

Bonded joint

Bonding area at micro scale

\[F = \sum_{k=1}^{n} F_n N_n \]

- \(F \): Strength
- \(F_n \): Strength of bond
- \(N_n \): Number of bonds

Bonded area: < 0.3 nm
Strength

Wet- and Dry-strength Additives – Application, Retention and Performance, Gavin G. Spence (Editor), Tappi Press, 1999.

Strength of bond

• Chemical nature of bond:
 • Hydrogen – hydrogen bonds
 • Ionic bonds
 • Covalent bonds

Number of bonds

• Number and size of contact area
• Distribution of contact areas (formation)
• Flexibility of fibres
• Length of fibers
Strength

Wet- and Dry-strength Additives – Application, Retention and Performance, Gavin G. Spence (Editor), Tappi Press, 1999.

Strength of bond

- Chemical nature of bond:
 - Hydrogen – hydrogen bonds
 - Ionic bonds
 - Covalent bonds

Number of bonds

- Number and size of contact area
- Distribution of contact areas (formation)
- Flexibility of fibres
- Length of fibers

Mechanical means

- Refining
- Press
 - Dewatering
 - Volume
Strength

Wet- and Dry-strength Additives – Application, Retention and Performance, Gavin G. Spence (Editor), Tappi Press, 1999.

Strength of bond

- Chemical nature of bond:
 - Hydrogen – hydrogen bonds
 - Ionic bonds
 - Covalent bonds

Number of bonds

- Number and size of contact area
- Distribution of contact areas (formation)
- Flexibility of fibres
- Length of fibers

- Chemical additives and cat. starch
 - Bridging the gaps in the fibre web
 - Increasing robustness of bonds
 (Molgewicht, flexibles Polymer)
 - Covalent bonds
Strength enhancement elements

- Chemicals
 - Chemical cost
 - Interaction with other additives
 - Impact on machine runnability

- Refining
 - Energy cost
 - Over-refining
 - Loss of bulk
 - Dust

- Fiber choice
 - Virgin fibre cost
 - Recycled fibre quality

Optimization is critical!
Chemical dry strength additives

Achievable strength increase

Ease of application

Solution
- “pump & go“
- Addition to wet-end or size/film press

+10% strength
 e.g.:
 - FennoBond 3300E
 - FennoBond 46
 - FennoBond 80S

Powder

+20% strength
 e.g.:
 - FennoBond ECA 720 + cat. wet end starch

Powder + second component

+20% strength
 e.g.:
 - FennoBond ECA 360 for filler treatment
Case studies
FennoBond 46
Optimal Mw and charge of FennoBond 46 (composit polymer):

- Mechanism: ionic bonds, hydrogen bonds, increased bonding area and number
- Improved effect on interfiber bonding
- Less sensitive to anionic trash
- Improved filler retention without a strength loss
- Pump & Go
FennoBond 46 for lint control in SC paper

Machine overview

- Grade: SC-A++, 50-80 g/m²
- Machine type: gap former 750 m/min, off-line super calanders
- Furnish: Groundwood + bleached kraft
- Chemicals:
 - 33% filler, GCC+Clay
 - Hercobond 5250 @ 4 kg/t anti-linting agent for high quality heatset grade

Needs

- Improve surface strength and reduce linting
- Reduce cost of anti-linting additive

Solution and Benefits

- FennoBond 46 dosed @ 4 kg/t to thick stock instead of 4 kg/t HB 5250
- Runnability improved and speed increased by 15 m/min
- Z-directional strength, IGT dry pick and tensile stiffness improved
- Opacity improved and optical brightener reduced by 0.5 kg/t
- Lint reduced by 30%, picking and piling reduced in printing trial
FennoBond 46 vs. PAE
Machine trial on SCA-paper

Z-tensile strength

IGT dry pick

Tensile stiffness index MD
This trial paper had more issues with linting than dusting.

Linting was most critical in 1. top unit, screen 50% surface.

FennoBond 46 reduced lint by 29% in 1st top unit screen compared to reference PAE.

FennoBond 46 allows about 10 000 copies more.
EcoFill
Challenges for P&B grades

Poor and variable quality of recycled fibers, difficult to achieve high strength

Increasing cost of high quality recycled fibers

High ash level in the sheet: 10-20%

Closed water loops: conductivity 2-7 mS/cm, cationic demand 500-1500 μeq/l

Starch prices fluctuate, expecting shortage of starch in the market in the future
EcoFill

- Powder product, storage stable, high active content
- Anionic polymer, cationic component is needed for fixation
- Trade name: FennoBond ECA 360 or FennoBond ECA 720
- Mechanism: ionic bonds, hydrogen bonds, increased bonding area and number

- Further details:
EcoFill for testliner

Machine overview
- 120,000 t/y Testliner, 100-200 g/m²
- 100% RCF, unbleached
- 2 Plies, Fourdrinier, shoe press
- Size press
- Conductivity: 4200 µS/cm, colloidal charge 350 µeq/ml

Needs
- Run size press only one sided
- Increase speed and/or safe steam
- Stay safely within quality specification

Solution and Benefits
- EcoFill added to the back ply:
 - FennoBond ECA 725 after mixing chest
 - FennoBond 46 after machine chest
- Strength increase: +10%, even when basis weight was reduced by 10 g/m²
- Reduction of basis weight = fibers + steam + basis weight reduction may be feasible
Trial results, FennoBond ECA 720, average values

Graph:
- **Prod. Testliner 3 150 g/m²**
 - Strength: 326, 353, 356
 - ECA 725 kg/t: 217, 237, 225
- **Prod. Wellenstoff 140 g/m²**
 - Strength: 344
 - ECA 725 kg/t: 214, 236

Legend:
- Burst
- SCT*100
- CMT
- FB 46 kg/t
Summary

• Surface starch and/or wet end starch are not able to provide sufficient strength in all cases

• Synthetic dry strength agents are able to improve strength further and can positively influence dewatering, formation and retention

• Selection of a suited system depends on:
 • Required strength increase
 • The efforts/benefits for the customer

• Alternative or additiv to starch there are synthetic products, which can increase the achievable dry strength and productivity