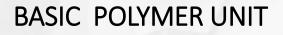
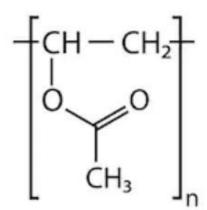


THE EFFECT OF NANO CELLULOSE ADDITION ON THE PROPERTIES OF WATER-BASED POLYVINYL ACETATE PAPER ADHESIVE


Barbara Šumiga¹, Tea Kapun¹, Boštjan Šumiga², Matjaž Kunaver³


¹Pulp and Paper Institute, Bogišićeva 8, SI–1000 Ljubljana
 ²University of Ljubljana, Faculty of Natural Sciences and Engineering, Snežniška 5, SI–1000 Ljubljana
 ³National Institute of Chemistry, Hajdrihova 19, SI–1000 Ljubljana

ADVANTAGES OF WATER-BASED POLYVINYL ACETATE ADHESIVES

- widely used in paper, wood and graphical industry
- environmentaly friendlier than solvent based
- no harmful substances (such as formaldehyde) are released
- ----> simple application
- ----> low cost and availability
- made by polymerisation of the vinyl acetate monomer

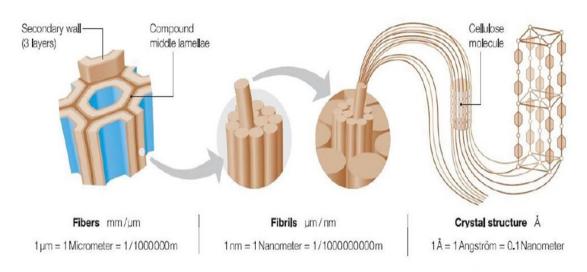
Polyvinyl Acetate (C₄H₆O₂)_n

THE TESTED PVAc ADHESIVES

Adhesive for paper and cardboard, paper bags and suitable for bookbinders and graphical industry

Adhesive for paper and cardboard, transport packaging and paper bags

→ The difference between them: MEKOL 1413/G forms more elastic film after drying

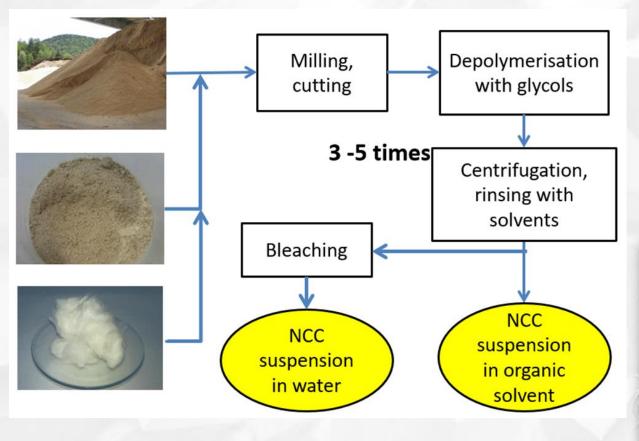

PVAc ADHESIVES PROPERTIES GIVEN BY PRODUCER

Water dispersion of polyvinylacetate polymer forms transparent film after drying

PROPERTIES	MEKOL 1301/1	MEKOL 1413/G
Colour	WHITE	WHITE
Viscosity [mPas]	1.700 - 2.200	15.000 - 22.000
Solid content [%]	50	46,5

NANOCELLULOSE

Zimmermann et al. Adv. Eng. Mater. 6 754-761 (2004)


Scheme of cellulose/fibers/fibrils/crystal structure

Application for different end uses:

- Additives for paints, pigments, inks and adhesives
- Composite materials
- > Nonwovens
- Paper and board as a filler or as an additive in coating color
- Food products
- Filter materials
- Cosmetics etc.

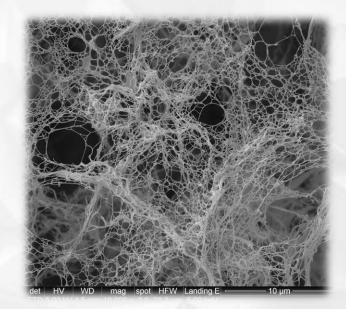
NANOCRYSTALLINE CELLULOSE FROM KI

→ NANOCRYSTALLINE CELLULOSE WAS PRODUCED BY KI Needle form Solid content: 8 %

EHT = 5.00 k/

Signal A = SE2

Date 14.14 2017


Mag = 50.00 K)

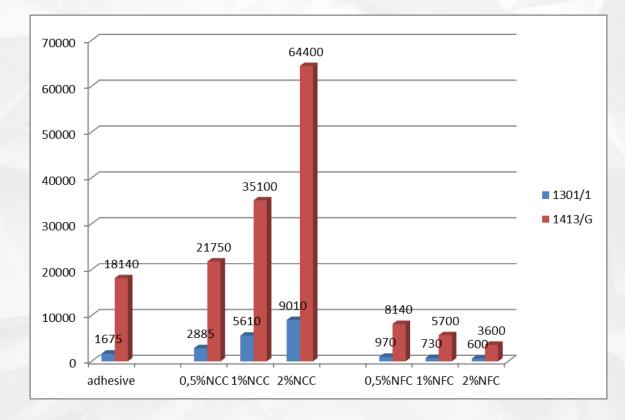
Diameter: 10-20 nm Length: 40-200 nm Crystallinity: 65 % to 90%

NANOFIBRILLATED CELLULOSE (COMMERCIAL)

- ----> Fibre form
- ----> High specific surface
- → Nanofibrils in at least one dimension less than 100 nm
- ---> Solid content: 4 %
- ----> Diameter: 10-200 nm
- ··→ Length: ≤50 µm

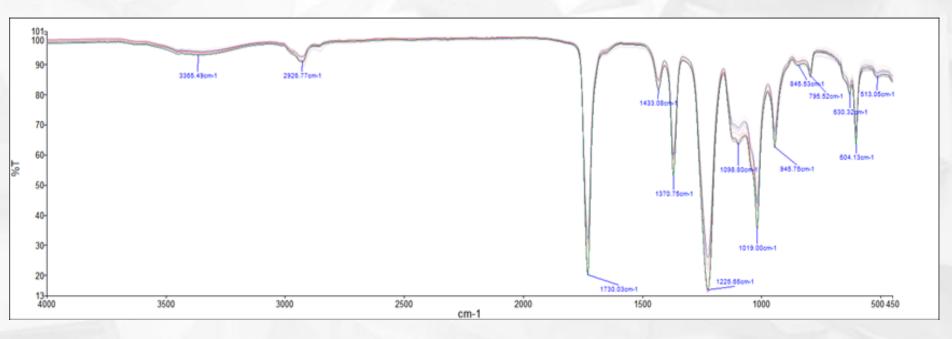
https://miro.medium.com/max/4200/0*ODJG_5d71yUb3c7-

ADHESIVES MODIFICATIONS


Three diferent amounts [wt %] of nanocellulose were added to the adhesive:

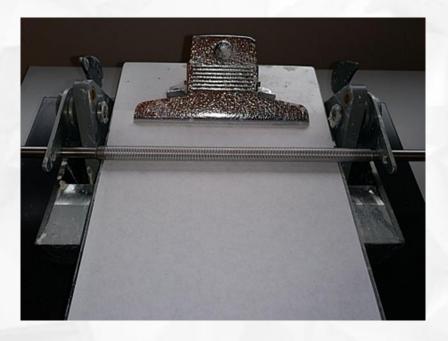
- ··**→** 0,5 %,
- ··→ 1 %
- ··→ 2 %

Mixed with disperser for 5 minutes
Mixing speed: 1500 rpm


VISCOSITY [mPas] OF MODIFIED PVAc ADHESIVES

FTIR SPECTRA OF THE ADHESIVE SAMPLES

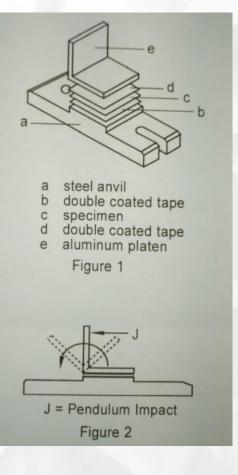
- Dry adhesive film on the glass plate.
- FTIR Spectra are typical for PVAc adhesives.
- No significant differences between samples.


PAPER PROPERTIES

Mechanical properties of the paper (substrat) were tested

PARAMETER	STANDARD	UNIT	RESULT [MD/CD or U/D]
Grammage	SIST EN ISO 536	g/m²	52,0
Thickness	SIST EN ISO 534	μm	80,5
Roughness PPS	ISO 8791-4	μm	5,63/5,84
Tearing resistance (tear index)	SIST EN ISO 1974	mNm²/g	9,43/9,47
Bursting strength (burst index)	SIST EN ISO 2758	kPam²∕g	3,04/3,08
Tensile properties (tensile index, stretch at break, breaking length)	SIST EN ISO 1924-2	Nm/kg, %, km	60,5/34,0 1,5/4,3 and 6,2/3,5
Air permeability according to Bendtsen	SIST ISO 5636-3	ml/min	1776,8/1710,9
Air permeability according to Gurley	ISO 5636-5	S	6,72/7,05
Roughness Bendtsen	ISO 8791-2	ml/min	419,5/472,2

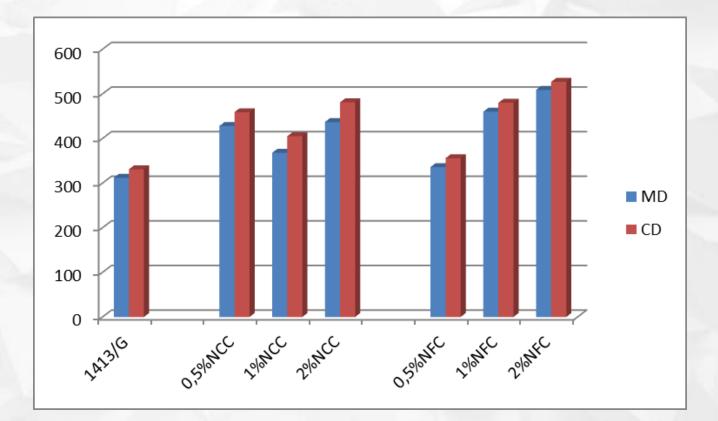
ADHESIVE COATING AND PAPER LAMINATING


Average grammage of coated dry adhesive was 17 g/m²

- → Single sheet coating of the basic paper with grammage 52 g/m²
- --> Lab-scale rod coater
- Adhesive coating was performed with rod no. 4
- → Paper sheet was put on the coated adhesive surface
- → The use of the same pressure was achieved by rod no. 0
- → Samples were dried at 60 °C for 2 minutes

IBT - INTERNAL BOND TEST (ISO 16260)

--> Basic principle



AVERAGE IBT [J/m²] OF ADHESIVE MEKOL 1301/1

AVERAGE IBT [J/m²] OF ADHESIVE MEKOL 1413/G

INCREASE OF IBT VALUES IN %

MEKOL 1301/1

MEKOL 1413/G

	Increase in %	Increase in %
Addition	MD	CD
0,5%NCC	27	38
1%NCC	37	45
2% NCC	61	87
0,5%NFC	10	14
1%NFC	15	20
2%NFC	28	27

Addition	Increase in % MD	Increase in % CD
0,5%NCC	37	39
1%NCC	18	22
2% NCC	40	45
0,5%NFC	8	8
1%NFC	47	45
2%NFC	63	59

CONCLUSIONS

- NFC and NCC nanocellulose were succesfully incorporated to PVAc adhesive and applied to paper
- NCC strongly increases viscosity of PVAc adhesive, while NFC reduces its viscosity
- → Addition of NCC increased IBT values from 40-87 %, while NFC from 27-63%
- According to obtained results, nanocellulose can be used to improve adhesive properties of PVAc adhesives

ACKNOWLEDGEMENTS

→ The work was carried out within the RDI project Cel.Cycle: »Potential of biomass for development of advanced materials and bio-based products« (contract number: OP20.00365), co-financed by the Republic of Slovenia, Ministry of Education, Science and Sport and European Union under the European Regional Development Fund, 2016–2020.

---> MITOL, d.d. Sežana for kind donation of MEKOL adhesives