# ADRIZ Pulp & Paper

#### **ShortFlow Deaeration**

38<sup>th</sup> International DITP Symposium, November 2011



www.andritz.com

We accept the challenge!

Introduction

- Effective air and gas management is essential for high quality Paper and Board production
- Complete deaeration of stock and wire water is still standard practice today with high speed paper machines, especially those producing Printing & Writing grades
- Effective air removal is also becoming more important for other grades, for example fast board machines utilizing recycled fiber as a raw material
- Recently more attention has been focused on this area with smaller volume approach systems where the wire water is deaerated
- Partial deaeration is sufficient for certain applications

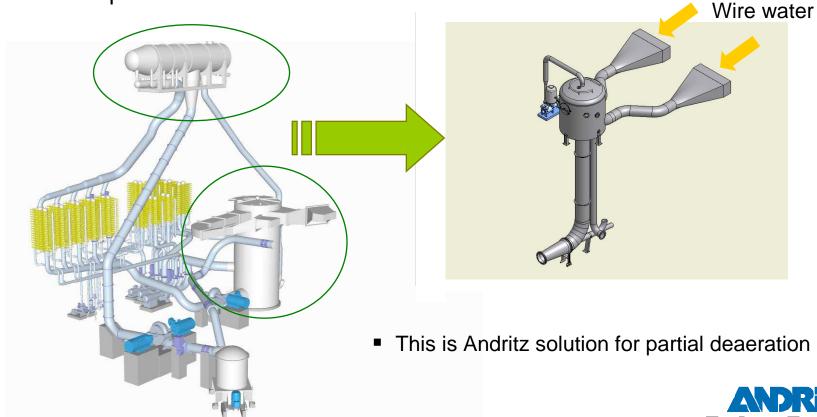


Recommendation for system design

As a general rule and instruction for board grades the following values should not be exceeded:

| Wire speed [m/min]                                       |       |       |  |
|----------------------------------------------------------|-------|-------|--|
| <1000                                                    | <1500 | ≥1500 |  |
| <1.4%                                                    | <0.7% | <0.2% |  |
| Entrained air (free and bound) excluding dissolved gases |       |       |  |




#### Air removal from white water

- Entrained air (air bubbles) is removed easily from white water under vacuum
- Entrained air removal doesn't require boiling point vacuum
- Single vacuum pump system is sufficient
- No condenser is required
- Variable speed drive for vacuum adjustment to provide optimum deaeration performance
- Reduced energy consumption
- Low cost vacuum system



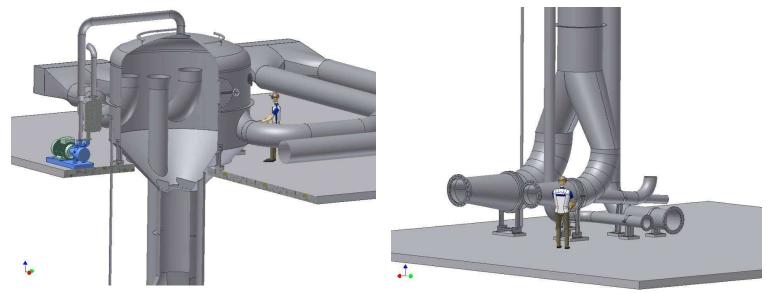
#### Innovation

- ANDRITZ ShortFlow deaeration is an advanced wire water deaeration system
- This system combines the existing white water silo and conventional deaeration into one compact unit



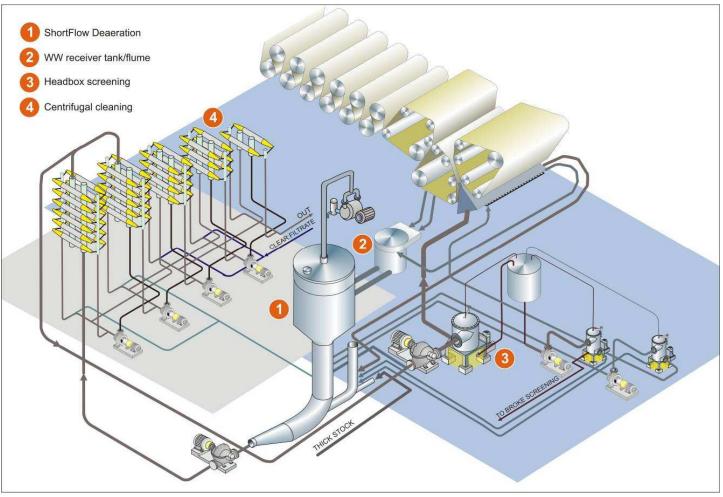
Pulp & Paper

#### Innovation


- The ShortFlow deaeration system collects wire water and former water to a deaeration tank, where a vacuum is applied
- Water from the paper machine is transferred to the deaeration tank through the transition pipes

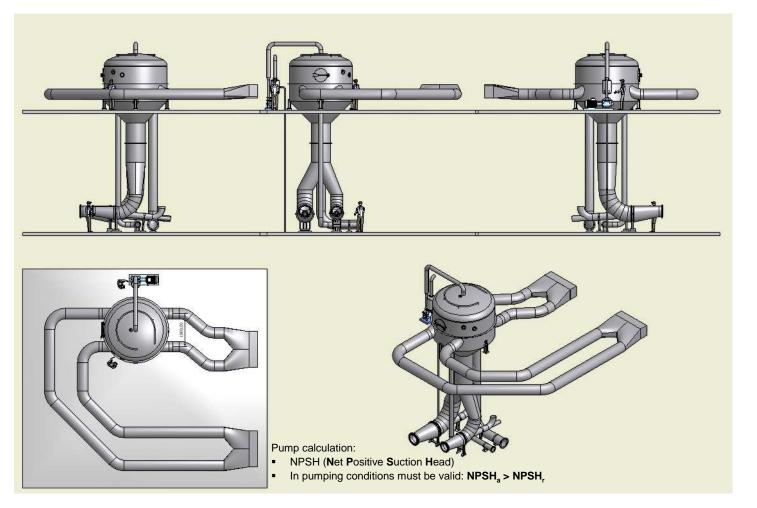





#### Innovation

- Water is brought to vacuum space above the liquid level in the deaeration tank in order to prevent air submergence
- New ShortFlow deaeration system is adaptable innovation to all paper and board making processes where complete deaeration is not required
- It is applicable for new and existing paper machines






#### Typical installation diagram





#### **Typical layout**





**Operational results** 

- PM speed 800 m/min
- Graphic paper 90 g/m<sup>2</sup>
- Dilution headbox
- Deaerator vacuum -70 kPa ... -85 kPa

Headbox HC manifold consistency:

 The coefficient of variation (cov) of the stock consistency variation is 0.8 % or less measured from HC line headbox manifold

#### Deaeration - Total air content:

- Total air content at the headbox less than 1.5% (incoming air content approximately 3.5%)
- Dilution water total air content less than 0.7%





#### Features and benefits

| Features                                                | Benefits                                                  |
|---------------------------------------------------------|-----------------------------------------------------------|
|                                                         | <ul> <li>High paper quality</li> </ul>                    |
| <ul> <li>Easily adaptable design</li> </ul>             | <ul> <li>Better sheet formation</li> </ul>                |
| <ul> <li>Flexible layout</li> </ul>                     | <ul> <li>High system stability</li> </ul>                 |
| <ul> <li>Single vacuum pump system</li> </ul>           | <ul> <li>Less pin holes</li> </ul>                        |
| <ul> <li>No condenser required</li> </ul>               | <ul> <li>High runability</li> </ul>                       |
| <ul> <li>Variable speed drive for optimized</li> </ul>  | <ul> <li>Improved drainage</li> </ul>                     |
| vacuum adjustment                                       | <ul> <li>Increased productions</li> </ul>                 |
| <ul> <li>Reduced amount of piping</li> </ul>            | <ul> <li>Increased machine efficiency</li> </ul>          |
| <ul> <li>Reduced volume of approach system</li> </ul>   | <ul> <li>Reduced grade change times</li> </ul>            |
| <ul> <li>Best process cleanliness with</li> </ul>       | <ul> <li>Reduced energy consumption</li> </ul>            |
| polished surfaces                                       | <ul> <li>Less cost</li> </ul>                             |
| <ul> <li>Adaptable to all applications where</li> </ul> | <ul> <li>Lower investment cost</li> </ul>                 |
| complete deaeration is not required                     | <ul> <li>Less chemicals needed (less defoaming</li> </ul> |
|                                                         | chemicals and less biocides)                              |



#### Legal Disclaimer

All data, information, statements, photographs, and graphic illustrations contained in this presentation are without any obligation to the publisher and raise no liabilities to ANDRITZ AG or any affiliated companies, nor shall the contents in this presentation form part of any sales contracts, which may be concluded between ANDRITZ GROUP companies and purchasers of equipment and/or systems referred to herein.

© ANDRITZ AG 2011. All rights reserved. No part of this copyrighted work may be reproduced, modified or distributed in any form or by any means, or stored in any database or retrieval system, without the prior written permission of ANDRITZ AG or its affiliates. Any such unauthorized use for any purpose is a violation of the relevant copyright laws.



# ADRIZ Pulp & Paper

#### **ShortFlow Deaeration**

38<sup>th</sup> International DITP Symposium, November 2011



www.andritz.com

We accept the challenge!