

Algae for wastewater treatment

Gabriele Weinberger, Alp Ergünsel, Janja Zule, Quentin Thiebaut **PTS Environment Symposium, 08**th – 10th November 2011

contents

- 1. Overview of project basics, aim, consortium, topics, execution
- 2. Materials and Trials
- 3. Summary of results
 - 1. Cultivation
 - 2. Degradation performance
 - 3. Algae-Bacteria-Biomass characteristics

4. Pilot plant operation

5. summary

project basics and aim

Title: Combined <u>algal</u> and <u>ba</u>cterial waste water treatment for high environmental <u>qua</u>lity effluents (ALBAQUA)

project consortium

© PTS 2011

Trials – overview lab scale tests

Cultivation

- Isolation of algae from paper mill effluents
- Cultivation and pre-selection of suitable algae species

Design parameters

- continuous operation of a lab scale waste water treatment unit
- operated with real waste water of a paper mill wwtp
- varying operating parameters
- Trials so far: with chlorella vulgaris

Trials – overview lab scale tests

Nearly similar operating conditions in all bioreactors Currently all trials with *chlorella vulgaris*

Trials – lab scale plants

11-11-10

Trials – operating conditions and parameters

Operating parameter	Lab scale trials	Pilot trials	
F/M	0,05–0,1 kg BOD ₅ /(kg dsm.d)	0,03 – 0,09 BOD : VS	
HRT	2–5 d	2 d, 3,8 d, 1,8 d	
DSM	0,3–2,5 g/l	0,5 – 2,5 g/l	
nutrition load	C:N:P = 1100:6:0,5		
O ₂ concentration	2–6 mg/l (supplied by algae – no aeration)	2–8 mg/l (supplied by algae – no aeration)	
temperature/pH	T 25 – 30°C; pH 7,5-8,5 T 15 – 30°C; pH 7,5-9,5		
lighting	10:14 h and 12:12 h natural daylight		
measured parameter	Chl-a, DSM, COD, BOD ₅ , TOC, NH ₄ , NO ₃ , NO ₂ , PO ₄		
	(partly: microorganism composition) TOC (DOC)		
calculated parameter	HRT, F/M, SRT, algae:bacteria ratio		

Results – algae isolation and cultivation

Example: algae observed in paper mill effluent

Isolation: dilution method by plating on agar plates

Re-suspension in medium of the isolated cells after plating

6 algae species suitable for paper industry effluent treatment found

Der Forschung | Der Lehre | Der Bildung

Results – examples effluent degradation

Results - sedimentation of algae-bacteria-biomass

before

after 2h

SVI: 30-40 ml/g

11-11-10

Good settling conditions

Results - microscopic investigation

© PTS 2011

Results – summary effluents degradation

paper mill	Raw material	Products	Settle- ability	ØDegradation performance	No ext. Aeration	Chl a+b µg/ml	O ₂
1 Mech. pulp, was	Mach pulp waste paper	printing papars	0	80 %	5	5	()
	Mech. pulp, waste paper	printing papers	0	70 %	0	≤ 12	0
2	pulp, waste paper	wood containing coated printing paper	0	65 %	\$	5	5
3			0	80%	S	5	\$
4	waste paper	board	0	70 %	0	≤ 16	0
5	pulp	Woodfree graphic paper	0	76 %	0	≤ 14	0
6	waste paper	board	C	72 %	0	≤ 23	Ü
7	waste paper	board	\odot	70 %	0	≤ 12	0
8	waste paper, pulp	Woodfree graphic paper	0	76 %	0	≤ 12	Ü
9	waste paper, mech. pulp	Newsprint	0	65 %	©	≤ 16	

Results – algae-bacteria biomass characteristics

Parameter	Mixed sludges	Activated sludge	Algae
Ash (%)	35 - 68	44	9
C (%)	23 - 34	36	46
N (%)	2,6 – 5,7	4,4	7,8
P (%)	2,0 – 3,9	2,2	4,4
Algae (%)	2,0 – 12	/	1
Heating value (MJ/kg)	8 - 12	7	25,8* (Scenedesmus) 29* (Chlorella)

Trials –pilot plant

© PTS 2011

Characteristics Slovenian paper mill

- **Production** printing paper (primary fibers, different programs)
- wwtpchemo-mechanical waste water treatment
volume of treated water: 3,000 m³/day, 1,065,000 m³/year
volume of sludge produced: 1,800 t/year

Effluent quality	Limit output values
Suspended solidsCODBODN, PtotalpHTemperature	15 mg/l 50 - 400 mg/l ** 20 - 80 mg/l ** < 3 mg/l 7 30 - 39 °C 110 mg/l 20 mg/l N (15 mg/l); P (3 mg/l)

Results – pilot operation

BOD (mg/L) IN, OUT

Biotechnological effluent treatment

Lessons learned

- •Algal bacterial community develops into a natural mix
- •Sufficient oxigenation is easily achieved with large margin
- •Major threat: Chironomidae larvae consume the sludge (algae first)
 → physical barriers (cover, insect net), occasional violent mixing and/or biological agents (Bti, Bs) integrated into the bacterial sludge
- •Some additional (clean) algae inoculation will be necessary
- •Insolation is **not** a major constraint, temperature and mixing are more important
- •Flocculation is easy; thinking of more violent mixing to prevent insects, flocculation and sedimentation in the reactor and have more time for the flocculation in the sedimenter
- •On-line control of nutrients and Chl a will be required
- •Sludge is being tested for biogas (with good preliminary results)

Recommendations for operation

- HRT between 1-3 day(s) depending of the wastewater COD
- For highly polluted wastewaters (COD over 800 mg/l) this system can not be suggested.
- > A biomass conc. 1.5 2.5 g/l and a SRT of 16-20 days favour the algae growth.
- > A sedimentation time of 2 3 hours can be selected.
- Since there are no blowers in the system, stirrers are needed to keep the flocs suspended → dead zones have to be avoided.
- \succ O₂ and pH of the system should be monitored.
- > The colour of the system is a good indicator of system health.
- Intermittent aeration with blowers will favour the heterotrophic bacteria in the system and therefore it has to be avoided.

Summary

- good settling of algal-bacterial biomass most of the time and for most treated effluents from paper industry
- good degradation results
- no external aeration necessary in algae-bacteria-bioreactors; sufficient O₂ concentration for bacterial heterotrophic degradation activity supplied by algae photosynthesis activity
- extrusion/devour of algae by excess bacterial biomass growth under operating conditions of

HRT<24 h, DSM_{total} > 3 g/l, B_{TS} > 0,25 kg BSB_5 /(kg TS d)

- unsatisfactory settling of algae on carriers/extrusion of algae by bacterial biomass
- Necessity of operation of covered/closed bioreactor system under natural conditions due to serious contamination problems (larvae)

Gefördert durch:

Bundesministerium für Wirtschaft und Technologie Results were obtained within the project "ALBAQUA" CORNET 23 EN, which is being funded by the German Federal Ministry of Economics and Technology BMWi under the Cornet programme and is being performed together with other European institutes.

aufgrund eines Beschlusses des Deutschen Bundestages

Thank you for your kind attention!

Dipl.-Ing. (FH) Gabriele Weinberger

PTS Ressourcenmanagement – Wasser und Energie Heßstr. 134 80797 München

Tel.: 089/12146-463 Email: <u>gabriele.weinberger@ptspaper.de</u>

In collaboration with

Janja Zule, ICP-TCP Ljubljana, Slovenia janja.zule@icp-lj.si

Alp Ergünsel, TU Hamburg-Harburg, Germany erguensel@tu-harburg.de

Quentin Thiebaut, Celabor, Belgium quentin.thiebaut@celabor.be

More information:

http://www.cornet-albaqua.eu/

11-11-10

final conference:

PTS, Munich, 7th December 2011

© PTS 2011