

New PCC based Specialty Pigment for Specific Use in Newsprint Paper

<u>R. Schneider</u>, B. Kübler, M. Laufmann, Applied Technology Services Business Unit Paper, Omya International AG, Schweiz

Content

- Graphical papers, current trends in newsprint
- Printing technology / inks for newsprint
- Good reasons for use of CaCO₃ in newsprint
- Print strike through / print show through
 - important influencing factors
 - impact of pigments on print through (Lab study)
- Omyasorb 8000 specialty pigment, commercial experience
- Summary / conclusion

Printing & Writing Paper Production 2009

Current trends in Newsprint, Europe

Mix of PM's with different production capacities PM's, large capacities

Standard newsprint

- wide, fast, new PM's
- 100 % de-inked pulp
- located in densely populated areas
- lower basis weight
- increased print densities
- increased multi color printing

PM's, average / smaller capacities

- Improved paper qualities
 - higher brightness
 - higher opacity
 - Heat-Set
 - SC-C

Applied Printing Technologies for Newsprint

■ Globally about ²/₃ of all publications are printed in offset

Cold-Set (mostly applied)

- Drying by absorption / diffusion
- Ink with low viscosity fractions

Flexo print

- Drying by evaporation
- Low viscosity inks

Waterless offset printing

- High viscosity inks, temperature
- High surface strength required

Ink-Jet

- Integrated ink jet
- Personalization

Cold-Set Printing Ink Compositions

Composition

Binders (rosin, linseed oil, soja oil, starch and bee wax), **Fillers and color pigments**

Purpose of binders

Coverage of ink pigments, to fix them onto the paper surface and to protect them from mechanical abrasion

Typical composition

	Heat-Set	Cold-Set black	color
Pigments	12 – 20	20 – 25	15 – 25
Rosin	25 – 35	8 – 10	20 – 25
Vegetable oil	5 – 15	0 – 12	15 – 25
Mineral oil	25 – 40	<mark>~ 60</mark>	20 – 30
Additives	5 – 10	1 – 5	1 - 5

Source: Printing Technology; H.Ull^rich

Cold Set Print Show / Strike Through Mechanism

- Cold-set ink pressed into paper surface
- Solid components (pigments and resin) remain on paper surface
- Low viscosity components (mineral and vegetable based oil) separate from the ink layer by diffusion, adsorb on fiber and pigment surfaces
- Excessive low viscosity components migrate (time depending) in direction paper back side, thereby increasing local transparency
- Specialty pigments and / or higher proportions of regular fillers offer additional absorption potential in order to immobilize the excessive low viscosity portions

Print show / strike Through "Print through"

Print show through

Image, which is visible through a sheet of unprinted paper covering a printed surface. Print show through strongly influenced by sheet opacity

Print strike through

Diffusion of low viscosity fractions into the sheet towards the sheet back side (f time)

= print through

Print strike / show through - Important influencing Factors

Print strike / show through - Influence of Pigments

Primary, Secondary, **Specialty Pigments**

Opacity, Surface, Porosity, Pore structure, Absorption potential

Advantages of CaCO₃ as Primary Filler in Newsprint

- Increased brightness and opacity
- Improved smoothness (PCC)
- Improved ink absorption = less smearing

- Reduced print strike / show through
- Reduction of paper quality fluctuations due to DIP related pigment loading variations
- Cost reduction (Fiber replacement, bleaching, drying)
- Current pigment loading in newsprint paper 2 20 (24) %
 Primary filler addition in DIP containing newsprint 0 7 %
- Secondary pigment: ex DIP Primary fillers : CaCO₃ (Chalk, GCC, PCC) Clay Specialty pigments: Mg Al Silicate, calcined clay, Omyasorb

Influence of Pigments on Print strike / show through

Basis weight: 42.5 g/m²

Fiber furnish: 100 % DIP

Pigment loading:

Secondary ex DIP 13.4 % (5.3 % CaCO₃ / 8.1 % Clay)

Primary filler: 2 und 4 (8) %

Retention aid: 0.04 % PAM

Wet press applied: 0.42 MPa

Surface roughness: 4 PPS

Lab study

Pigment Data

		Hydrocarb 60	Omyasorb 7600	Omyasorb 8000
Spec. surface area	m²/g	7	50	48
Sedigraph 5120				
< 2 µm	%	62	66	69
< 1 µm	%	38	37	29
MTD d ₅₀	μm	1.45	1.40	1.50
Brightness R-457	%	95.0	94.6	96.2
Solids	%	75	40	37
Viscosity Brookfield	mPas	120	560	150
Total Intr. Hg Vol.	cm³∕g	0.16	0.74	1.16
Oil Absorption	g/100 g	~ 20	~ 55	~ 90

This document contains proprietary information which shall not be used and disclosed without Omya explicit written authorization.

MTD = Mittlerer Teilchendurchmesser

Pigment pore size distribution (Mercury Porosimetry)

*O*KA

Pigment Morphologies

Opacity at 42.5 g/m²

Lab study

Brightness R-457

Lab study

Roughness PPS (1.0 soft)

Lab study

Print strike through / show through

This document contains proprietary information which shall not be used and disclosed without Omya explicit written authorization.

Lab study

Omyasorb 8000 in Newsprint, Commercial Experience

Production: > 40 tons/h

Basis weight: <u>42.5</u> – 45.0 g/m²

Fiber furnish: 100 % DIP, 18 % Pigment ex DIP

Specialty pigment: (~ 1 %) Mg Al Silicate Omyasorb 8000

Retention system: Polyamine / PAM

Other additives: ATC / cationic starch

Pigment data (Commercial trial)

		Mg Al Silicate	Omyasorb 8000
Spec. Surface area	m²/g	73	58
Sedigraph 5120			
< 2 µm	%	82	67
< 1 µm	%	63	32
aps d ₅₀	μm	0.70	1.48
Brightness R-457	%	97.0	96.5
Solids	%	30.0	35.5
Viscosity Brookfield	mPas	60	190
Tot. Intr. Hg Vol.	cm³∕g	1.22	1.24
Oil absorption	g/100 g	~ 89	~ 84

Mg Al Silicate and Omyasorb 8000 (5000 x)

Mg Al Silicate

Omyasorb 8000

Results, Commercial trial with Omyasorb 8000

used and disclosed without Omya explicit written authorization.

Summary: Commercial Trail with Omyasorb 8000

- Basis weight 42.5 g/m²
- "Wet end" System / Runnability unchanged good
- Brightness / Opacity slightly increased like with Mg Al Silicate
- Short period trial Strike through / show through similar reduction like with Mg Al Silicate
- Longer period trial confirmed promising results of short trial
- Economical consideration Saving potential: ca. 1.7 Euro/ton paper

Summary / Conclusion

- Current trends in newsprint (Europe)
- Print through / important influencing factors
- Omyasorb 8000 = newly developed specialty pigment based on PCC
 - High specific surface area
 - Particular pore size distribution
 - High absorption capacity
- Omyasorb 8000 application
 - Increased brightness and opacity
 - Significantly reduced print through
 - Simple and safe application
 - Potential saving vs other specialty pigments

Omyasorb = new specialty pigment for newsprint (standard / improved) and other low basis weight graphical papers

Do You Have Any Questions

