New PCC based Specialty Pigment for Specific Use in Newsprint Paper

R. Schneider, B. Kübler, M. Laufmann,
Applied Technology Services
Business Unit Paper, Omya International AG, Schweiz
Content

- Graphical papers, current trends in newsprint
- Printing technology / inks for newsprint
- Good reasons for use of CaCO₃ in newsprint
- Print strike through / print show through
 - important influencing factors
 - impact of pigments on print through (Lab study)
- Omyasorb 8000 specialty pigment, commercial experience
- Summary / conclusion
Printing & Writing Paper Production 2009

“World”
~ 137 Million tons

Source: Pöyry Terminal

“Europe”
Mechanical
~ 22 Million tons

Quelle: CEPI

This document contains proprietary information which shall not be used and disclosed without Omya explicit written authorization.
Current trends in Newsprint, Europe

Newsprint paper today

- Mix of PM's with different production capacities

Standard newsprint

- wide, fast, new PM’s
- 100 % de-inked pulp
- located in densely populated areas
- lower basis weight
- increased print densities
- increased multi color printing

Improved paper qualities

- higher brightness
- higher opacity
- Heat-Set
- SC-C

PM’s, large capacities

PM’s, average / smaller capacities
Applied Printing Technologies for Newsprint

- Globally about $\frac{2}{3}$ of all publications are printed in offset

Cold-Set (mostly applied)
- Drying by absorption / diffusion
- Ink with low viscosity fractions

Flexo print
- Drying by evaporation
- Low viscosity inks

Waterless offset printing
- High viscosity inks, temperature
- High surface strength required

Ink-Jet
- Integrated ink jet
- Personalization
Cold-Set Printing Ink Compositions

Composition
- **Binders** (rosin, linseed oil, soja oil, starch and bee wax),
- **Fillers and color pigments**

Purpose of binders
Coverage of ink pigments, to fix them onto the paper surface and to protect them from mechanical abrasion.

Typical composition

<table>
<thead>
<tr>
<th></th>
<th>Heat-Set</th>
<th>Cold-Set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>black</td>
</tr>
<tr>
<td>Pigments</td>
<td>12 – 20</td>
<td>20 – 25</td>
</tr>
<tr>
<td>Rosin</td>
<td>25 – 35</td>
<td>8 – 10</td>
</tr>
<tr>
<td>Vegetable oil</td>
<td>5 – 15</td>
<td>0 – 12</td>
</tr>
<tr>
<td>Mineral oil</td>
<td>25 – 40</td>
<td>~ 60</td>
</tr>
<tr>
<td>Additives</td>
<td>5 – 10</td>
<td>1 – 5</td>
</tr>
</tbody>
</table>

Source: Printing Technology; H.Ullrich
Cold Set Print Show / Strike Through Mechanism

- Cold-set ink pressed into paper surface

- Solid components (pigments and resin) remain on paper surface

- Low viscosity components (mineral and vegetable based oil) separate from the ink layer by diffusion, adsorb on fiber and pigment surfaces

- Excessive low viscosity components migrate (time depending) in direction paper back side, thereby increasing local transparency

- Specialty pigments and / or higher proportions of regular fillers offer additional absorption potential in order to immobilize the excessive low viscosity portions
Print show through
Image, which is visible through a sheet of unprinted paper covering a printed surface. Print show through strongly influenced by sheet opacity.

Print strike through
Diffusion of low viscosity fractions into the sheet towards the sheet back side (f time).

Show through / strike through = print through
Print strike / show through - Important influencing Factors

- Flocculation, Formation, Retention, Filler distribution
 - Sheet formation

- Optical properties
 - Opacity, Brightness

- Basis weight

- Sheet internal – and surface structure
 - Smoothness, Porosity
 - Pore size distribution

- DIP, HS, TMP, Quality
 - Fiber source

- Printing
 - Ink volume,
 - Ink composition,
 - Lay-out

- Paper machine
 - Clothing, Drainage,
 - Machine lay-out
Print strike / show through - Influence of Pigments

Primary, Secondary, Specialty Pigments

Opacity, Surface, Porosity, Pore structure, Absorption potential
Advantages of CaCO$_3$ as Primary Filler in Newsprint

- Increased brightness and opacity
- Improved smoothness (PCC)
- Improved ink absorption = less smearing
- **Reduced print strike / show through**
- Reduction of paper quality fluctuations due to DIP related pigment loading variations
- Cost reduction (Fiber replacement, bleaching, drying)
- **Current pigment loading in newsprint paper 2 - 20 (24) %**
 Primary filler addition in DIP containing newsprint 0 - 7 %

- **Secondary pigment: ex DIP**
 Primary fillers: CaCO$_3$ (Chalk, GCC, PCC) Clay
 Specialty pigments: Mg Al Silicate, calcined clay, Omyasorb
Influence of Pigments on Print strike / show through

Basis weight: 42.5 g/m²

Fiber furnish: 100 % DIP

Pigment loading:
- **Secondary ex DIP**
 - 13.4 % (5.3 % CaCO₃ / 8.1 % Clay)

Primary filler:
- 2 und 4 (8) %

Retention aid: 0.04 % PAM

Wet press applied: 0.42 MPa

Surface roughness: 4 PPS
Pigment Data

<table>
<thead>
<tr>
<th></th>
<th>Hydrocarb 60</th>
<th>Omyasorb 7600</th>
<th>Omyasorb 8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec. surface area</td>
<td>m^2/g</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Sedigraph 5120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2 µm</td>
<td>%</td>
<td>62</td>
<td>66</td>
</tr>
<tr>
<td>< 1 µm</td>
<td>%</td>
<td>38</td>
<td>37</td>
</tr>
<tr>
<td>MTD d_{50}</td>
<td>µm</td>
<td>1.45</td>
<td>1.40</td>
</tr>
<tr>
<td>Brightness R-457</td>
<td>%</td>
<td>95.0</td>
<td>94.6</td>
</tr>
<tr>
<td>Solids</td>
<td>%</td>
<td>75</td>
<td>40</td>
</tr>
<tr>
<td>Viscosity Brookfield</td>
<td>$mPas$</td>
<td>120</td>
<td>560</td>
</tr>
<tr>
<td>Total Intr. Hg Vol.</td>
<td>cm^3/g</td>
<td>0.16</td>
<td>0.74</td>
</tr>
<tr>
<td>Oil Absorption</td>
<td>g/100 g</td>
<td>~ 20</td>
<td>~ 55</td>
</tr>
</tbody>
</table>

MTD = Mittlerer Teilchendurchmesser
Pigment pore size distribution (Mercury Porosimetry)

Pore volume \([\frac{dV}{d(\log d)}]\) / cm³/g⁻¹

- Hydrocarb 60
- Omyasorb 7600
- Omyasorb 8000

This document contains proprietary information which shall not be used and disclosed without Omya explicit written authorization.
Pigment Morphologies
Opacity at 42.5 g/m²

Lab study

This document contains proprietary information which shall not be used and disclosed without Omya explicit written authorization.
Lab study

Brightness R-457

This document contains proprietary information which shall not be used and disclosed without Omya explicit written authorization.
Roughness PPS (1.0 soft)

<table>
<thead>
<tr>
<th></th>
<th>without primary filler</th>
<th>2% Hydrocarb 60</th>
<th>4% Hydrocarb 60</th>
<th>2% Omyasorb 7600</th>
<th>4% Omyasorb 7600</th>
<th>2% Omyasorb 8000</th>
<th>4% Omyasorb 8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>µm</td>
<td>6.0</td>
<td>5.5</td>
<td>5.0</td>
<td>5.5</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

This document contains proprietary information which shall not be used and disclosed without Omya explicit written authorization.
Print strike through / show through

% Strike through / show through (24 h)

Without primary filler

GCC HCB 60
OSO 7600
OSO 8000

% Primary filler

This document contains proprietary information which shall not be used and disclosed without Omya explicit written authorization.
Omyasorb 8000 in Newsprint, Commercial Experience

Production:
> 40 tons/h

Basis weight:
42.5 – 45.0 g/m²

Fiber furnish:
100 % DIP, 18 % Pigment ex DIP

Specialty pigment: (~ 1 %)
Mg Al Silicate
Omyasorb 8000

Retention system:
Polyamine / PAM

Other additives:
ATC / cationic starch

This document contains proprietary information which shall not be used and disclosed without Omya explicit written authorization.
Pigment data (Commercial trial)

<table>
<thead>
<tr>
<th>Spec. Surface area</th>
<th>Mg Al Silicate</th>
<th>Omyasorb 8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>m²/g</td>
<td>73</td>
<td>58</td>
</tr>
</tbody>
</table>

Sedigraph 5120

< 2 µm	%	82	67
< 1 µm	%	63	32
aps d₅₀	µm	0.70	1.48

Brightness R-457

| % | 97.0 | 96.5 |

Solids

| % | 30.0 | 35.5 |

Viscosity Brookfield

| mPas | 60 | 190 |

Tot. Intr. Hg Vol.

| cm³/g | 1.22 | 1.24 |

Oil absorption

| g/100 g | ~ 89 | ~ 84 |

This document contains proprietary information which shall not be used and disclosed without Omya explicit written authorization.
Mg Al Silicate and Omyasorb 8000 (5000 x)

Mg Al Silicate

Omyasorb 8000

This document contains proprietary information which shall not be used and disclosed without Omya explicit written authorization.
Results, Commercial trial with Omyasorb 8000

- **Brightness R-457 - UV (%)**
- **Opacity (%)**
- **Density (back side, 6 h)**
- **Density (back side, 24 h)**
- **Print through (%)**
 - Without Mg Al Silicate
 - Omyasorb 8000

- **Specialty Pigment addition (%)**
 - 0%
 - 5%
 - 10%
 - 15%

- **Secondary pigment ex DIP (%)**
 - 0.1%
 - 0.2%
 - 0.3%

This document contains proprietary information which shall not be used and disclosed without Omya explicit written authorization.
Summary: Commercial Trail with Omyasorb 8000

- **Basis weight**
 42.5 g/m²

- **„Wet end“ System / Runnability**
 unchanged good

- **Brightness / Opacity**
 slightly increased like with Mg Al Silicate

- **Short period trial**
 Strike through / show through
 similar reduction like with Mg Al Silicate

- **Longer period trial**
 confirmed promising results of short trial

- **Economical consideration**
 Saving potential: ca. 1.7 Euro/ton paper
Summary / Conclusion

- Current trends in newsprint (Europe)
- Print through / important influencing factors
- Omyasorb 8000 = newly developed specialty pigment based on PCC
 - High specific surface area
 - Particular pore size distribution
 - High absorption capacity
- Omyasorb 8000 application
 - Increased brightness and opacity
 - Significantly reduced print through
 - Simple and safe application
 - Potential saving vs other specialty pigments

Omyasorb = new specialty pigment for newsprint (standard / improved) and other low basis weight graphical papers
Do You Have Any Questions