

Nanotechnology in papermaking – future or present

Dr. David Ravnjak

What is a nanomaterial?

"Nanomaterial" means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm.

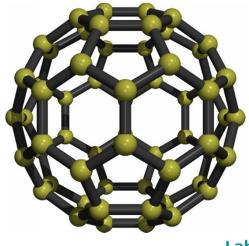
2011/696/EU – Commission Recommendation from 18.10.2011 on the definition of nanomaterial

Synthetic nanomaterials

- In use for a long time
 - $\rightarrow\,$ colloidal gold
 - \rightarrow soot in rubber industry
 - \rightarrow magnetic tapes, magnetic discs

LabelManagement

Synthetic nanomaterials


- The beginnings of nanotechnology
 - \rightarrow 1981 discovery of scanning tunneling microsope
 - \rightarrow 1985 discovery of fullerenes
- Intil year 2000:
 - \rightarrow basic research in field of nanoparticles
 - $\rightarrow\,$ production of nanomaterials on a laboratory scale

PAPIRNICA VEVČE

LABELS AND FLEXPACK

LabelPaper with

Label Management

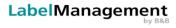
Synthetic nanomaterials

- After year 2000 first commercial applications
 - \rightarrow nanosilver antibacterial additive
 - \rightarrow titanium dioxide cosmetics, self-cleaning glass
- Increasing applications in various areas:
 - \rightarrow chemical industry main source of nanomaterials, catalysts

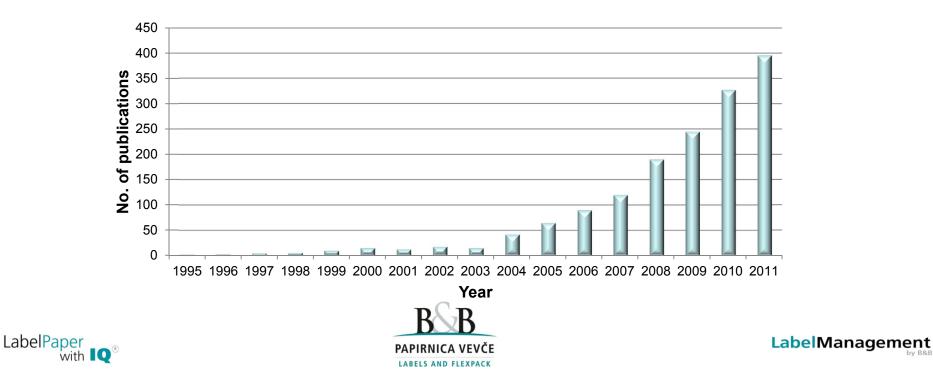
PAPIRNICA VEVCE

LABELS AND FLEXPACK

→ new materials with new properties – self-assembly, self-healing properties, improved strength


Nanomaterials in papermaking

- Already in use
 - \rightarrow natural e.g. clays
 - \rightarrow synthetic e.g. titanium dioxide
- New materials
 - \rightarrow nanocellulose
 - \rightarrow nanopigments
 - \rightarrow polymeric nanomaterials
 - $\rightarrow\ composites$



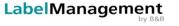
Nanocellulose

- Probably highest intensity in research
 - → nanocrystalline cellulose (NCC)
 - → nanofibrillated cellulose (NFC)
 - \rightarrow nanocellulosic fibres (NCF)

Nanocellulose

- Main properties
 - $\rightarrow\,$ fibre dimensions: d= 10-100 nm, L = 100 nm 100 μm
 - \rightarrow high strength
 - \rightarrow very good thermal stability
 - \rightarrow high specific surface
 - \rightarrow transparency
 - \rightarrow good water absorption
 - \rightarrow available in various forms



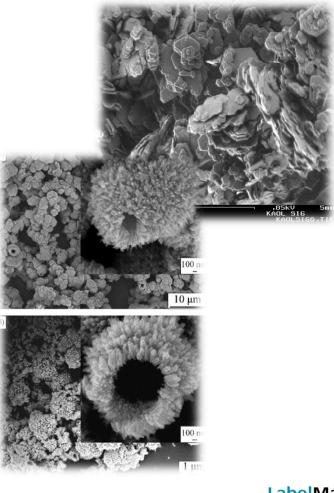

LabelManagement

Nanocellulose

- First semi-industrial plant in operation (Celluforce, Windsor, Kanada)
- Potential uses:
 - \rightarrow improvement of mechanical properties,
 - \rightarrow partial exchange of binders,
 - \rightarrow barrier coatings,
 - → packaging materials,
 - \rightarrow component in composites.

LabelPaper with

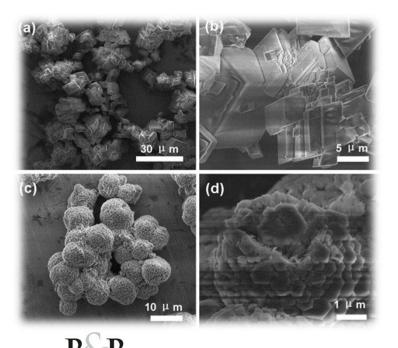
Nanopigments



- → natural clay is already a nanomaterial
- → improved properties by further processing

PAPIRNICA VEVČE

- Titanium dioxide
 - → targeted processing for improved properties


LabelManagement

Nanopigments

LabelManagement

- Calcium carbonate
 - $\rightarrow~$ nano PCC
 - $\rightarrow\,$ nanostructured GCC

PAPIRNICA VEVČE

Nanopigments

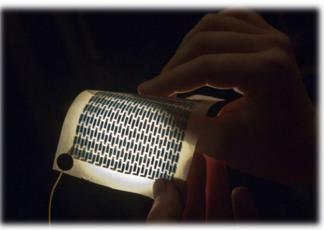
- Potential use
 - $_{\rightarrow}\,$ as fillers \Rightarrow to significantly increase the portion of fillers in paper
 - → in coatings ⇒ improved barrier properties, controll of ink penetration
 - \rightarrow most commonly used in composites

Polymeric nanomaterials

- Micro & nano capsules
 - $\rightarrow\,$ these are made of polymeric materials
- Polymeric nanoparticles
 - \rightarrow self-assembly, self-healing properties
 - \rightarrow active materials responding on environmental changes
- Potential use
 - $\rightarrow\,$ most commonly in composites
 - → functional layers (barriers, biosensors, chemical sensors)

New properties

- Surfaces treated with nanoparticles
 - \rightarrow coatings with nanoparticles (Ag, TiO₂)
 - s antibacterial properties
 - self-cleaning properties
 - $\rightarrow\,$ mikroparticles treated with nanoparticles on surface
 - ℽ pigment composites



New properties

- Surfaces treated with nanoparticles
 - \rightarrow direct application of nanoparticles
 - ℽ barrier properties
 - superhydrophobic or superhydrophilic surfaces
 - $\rightarrow\,$ printing with nanoparticles
 - ℽ printed electronics
 - ℽ printed sensors

LabelPaper

with **IO**

by B&B

New materials with new properties

- Nanocrystalline cellulose (NCC)
 - $\rightarrow\,$ varoius forms, crystals dimensions are in the nm range
 - $\rightarrow\,$ used as pure material, as coating or in composites
 - high strength (stress at brake ~ 200 MPa)
 - \u00e9 high stiffness
 - ℽ good barrier properties against oxygen

New materials with new properties

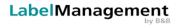
- Nanofibrillated cellulose (NFC)
 - $_{\rightarrow}\,$ cellulose fibres < 1µm in length, 10 100nm in diameter
 - $\rightarrow\,$ used as pure material for coating or in composites
 - e.g. for improving the mechanical properties while increasing the portion of fillers in paper

New materials with new properties

Composites

- \rightarrow sinergy of properties of individual materials
- \rightarrow new properties can be even better sinergy on microscopic scale
- $\rightarrow\,$ products with high added value
- \rightarrow increased portion of renewable materials in final product

Safety of nanomaterials

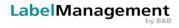


- Natural sources of nanoparticles
- Artificial sources of nanoparticles
- Although with same chemical composition, the materials can have different effects, dependent on their size

RISK = HAZARD x EXPOSURE

NANO HAZARD

Safety of nanomaterials



- Classical approach to risk assessment isn't sufficient
- Standards are not defined yet
- There is a need for comprehensive risk assessment in terms of:
 - → material itself
 - \rightarrow converting steps
 - → material's intended use
 - → final treatment, disposal
- Combination of risk assessment and LCA

NANO HAZARD

Conclusions

- Nanomaterials are present in nature.
- Synthetic nanomaterials are relatively new.
- The properties of nanomaterials are significantly different and are thus opening new fields of use.
- Nanomaterials are "multifunctional" materials ⇒ can be used for various products.
- Because of their properties they can represent a potential risk ⇒ risk assessment.

Questions?

