

Inštitut za celulozo in papir Pulp and paper Institute

Hemp fibers for production of speciality paper and board grades

Janja Zule, Marjeta Černič, Matej Šuštaršič

Bled, November 22, 2012

Papermaking fibers

Origin

- Softwood spruce, fir, pine
- Hardwood eucalyptus, aspen, birch
- Annual plants <u>hemp</u>, flax, kenaf, bagasse, cotton, straw

Properties

- morphological
- chemical
- physical, mechanical
- optical

- the oldest surviving piece of paper from hemp China (140 – 87 B.C.)
- the first European papermaking in the 16th century
- until the 19th century <u>rags (hemp and flax fibers)</u>
- growing need for paper rag supply insufficient
- exploitation of wood abundant and cheap
- today, only about 5 % of world s paper is made from annual plants (hemp, flax,...)

- renewed interest in hemp environmental reasons
- excessive deforestation (TREES - oxygen supply, CO₂ removal, natural balance)
- <u>1 t of PAPER</u> 3 t of WOOD up to 17 TREES
- HEMP has about <u>4 times higher yield / hectare</u> compared to TREES (20 years)
- TREES need 50-100 years to grow, HEMP can be cutivated in 100 days

	Hemp bast	Hemp core	
cellulose	70 %	35 %	
hemicellulose	15 %	35 %	
lignin	5 %	23 %	
			1
length, mm	5 - 40	0,5	
diameter, µm	25 - 50	22	
thickness, µm	10 - 25	1,4	/

hemp bast

long fibers

hemp core

short fibers

HEMP fibers – charactesristics

	WOOL)	HEMP
cellulose	40 – 5	0 %	70 %
hemicellulose	25 – 3	5 %	15 %
lignin	25 – 3	5 %	5 %
Fibers	SW	HW	
length, mm	3 - 6	(0,5 - 1,8)	5 - 40
diameter, µm	25 - 45	(10 - 36)	25 - 50
thickness, μm	2 - 5	(3 - 6)	10 - 25

- bleaching possible by environmentally friendly procedures (ozone, hydrogen peroxyde, oxygen)
- less energy needed for paper production compared to wood
- paper resistant against ageing (no change of colour, mechanical and chemical properties over centuries)
- 1 t of HEMP paper preserves 12 TREES!!!

- hemp pulp mill 5000 t/year wood pulp mill 250.000 t/year
- expensive production small capacities
- hemp is harvested once a year (storage needed, manual work with bundles, high costs)

HEMP pulping technology

- long hemp bast fibers are processed
- bales → digester, <u>water</u> is added (5 to 10 times fiber weight), cooking chemicals (NaOH, Na₂SO₃,...)
- digestion up to 8 h, 175 C
- separation of fibers and washing \rightarrow clean fibers
- beating (12 h) and bleaching \rightarrow fibers ready for PAPERMAKING
- processing time (20 h) costly equipment, expensive handling

Novel pulping techniques for annual plants

- pulp production without chemicals

 (high output, no pollution, low energy demand, low investment costs, cheap and easy to operate price)
- HEMP PULP (ultrasound technology) dr. Zsolt Nemeth – University of Budapest
- Pulp and Paper Institute Ljubljana (some preliminary tests were performed)
 - microscopy
 - mechanical testing (fiber characteristics)
 - chemical testing

Ultrasonic (or hydrodynamic) cavitation

Ultrasonic (or hydrodynamic) cavitation

- cavitation is formation of empty cavities in liquid and their subsequent implosion
- implosion of cavities
 - shock waves (100-300 m/s)
 - high temperature up to 5000 C
 - high pressure > 500 atm
 - formation of OH radicals (chemical reactions)

<u>Practial use:</u> emulsification, catalysis, homogenization, disaggregation, dispersion, production of nano-particles, water treatment, cleaning of surfaces

"Shark" shearing technology

- efficient cutting of particles
- low energy demand
- no waste generated
- no polluting chemicals
- no toxic byproducts
- cheap and easy to operate

Microscopy - results

P

Mechanical properties - results

- laboratory sheets from pulp suspension (Rapid Köthen)
- mechanical tests

 (fiber length, tensile length, tensile strength, break index,

burst index, folding strength, air permeability)

Results indicate - some characteritstics <u>similar or even</u> <u>better</u> than usual papermaking fibers from wood!

Fiber screening and further refining needed - proper fiber characteristics for papermaking!

Chemical properties - results

- pH value of fiber suspension neutral
- viscosity medium (degree of polymerisation of cellulose molecules quite high, long chains)
- ISO brightness (optical property) low (lignin still present)

Further chemical analyses still needed - characterisation of surface properties of fibers Bleaching needed - characterisation of mechanical, chemical and optical properties of fibers after bleaching

EVALUATION of papermaking potential of fibers in accordance with <u>sustainability</u> concept!!!

Conclusions

- hemp may be excellent substitute for wood cellulose fibers
- fiber quality highly depends on the pulping procedure
- "classical pulping processes" impact environment, expensive
- optimization of novel processes good quality fibers, sustainable production
- small scale production of speciality papers encouraged
- "hemp fibers" durable and convenient for production of high quality <u>archive</u>, <u>document</u> and <u>speciality art papers</u> as well as <u>security papers</u>
- hemp fibers as papermaking raw material have potential, further research still needed – to produce durable paper at reasonable price

Thanks for your attention!

More information available from:

Dr. Zsolt Nemeth <u>nzt@gmx.de</u>

Dr. Levente Csoka <a>lcsoka@fmk.nyme.hu