

The Next Generation of Paper Recycling.

Biobond. Improving the Sustainability of PaperSM Program*

All references to Biobond in this presentation are to the mark: Biobond. Improving the Sustainability of PaperSM

^M Service mark, Ashland or its subsidiaries, registered in various countries

"The Biobond Program significantly improves paper strength and machine operation by recovering starch from waste paper"

Concept

Mechanism

2

Biobond Concept

Current recycling practice:

95% fibre and filler

5% starch (mainly native starch)

Starch is the most valuable component:

- 1 ton waste paper: 170 €/ton
- 1 ton fresh starch: 450 550 €/ton

3

Starch Loss in Paper Production

As waste paper is pulped, starch separates from the fibres:

Patented Two Step Mechanism

Ashland Water Technologies

Two Step Mechanism

• Two step process:

Step 1: Starch Preservation

Prevents microbiological degradation of starch

• Can recycle approximately 10% of the starch

Step 2: Starch Re-fixation

Attaches the preserved native starch to the paper fiber

- Enables >50% starch recycling
- Previously "lost" or unusable raw material becomes a strength agent

Step 1: Starch Preservation

Step 1: Starch Preservation

- Starch concentration increased in system
- Starch deposition at machine frames

8

Step 2: Starch Re-Fixation

ASHLAND.

Step 2: Starch Re-Fixation

 Clear filtrate with starch in process water

 Clear filtrate with Biobond technology: starch fixed to new paper

Benefits

- Reduction of fresh starch and/or increased paper strength
- 2-3% yield increase starch and fibre savings
- 7-15% improvement in dry strength
- 50% lower conductivity
 - Polymer additive performance improved
- 15-20% BOD / COD reduction
- Overall cleaner system
 - Improved runnability
- Fresh water savings
 - Complete system closure possible
- Decreased chemical consumption
 - Retention aid
 - Fixatives
- Possibility to run only with one side of size press
- Reduced basis weight

Typical ROI Calculation

Saving	Range	€/T Min.	€/T Max.
Yield Increase	1.2-2.5 %	1.90	3.00
Incumbent MB	100%	3.00	3.50
Retention Aid	25%	0.38	0.60
Surface Starch	15%	2.22	3.33
Fresh Water	1-2 m³/T	0.04	2.25
Effluent Volume	1-2 m ³ /T	0.25	1.05
PM Breaks per Day	0.5 – 1.0	1.11	2.22
Cleaning Time	2 hr/month	0.59	0.58
Cleaning Chemical	100%	0.05	0.10
Basis Weight	1-2 gsm	1.99	3.78
COD			
Total Savings		€11.41	€20.41

Ashland Water Technologies

ASHLAND.

Typical ROI Calculation

Saving	Range		€/T Min.	€/T Max.			
Yield Increase	1.2-2.5 %		1.90	3.00			
Incumbent MB	100%		3.00	3.50			
Retention Aid	25%		0.38	0.60			
Surface Starch	1.	Impro	ved cost perfor	mance versus			
Fresh Water	1-2	 1-2 1-2 1-2 1-2 1-2 1-2 					
Effluent Volume	1-2						
PM Breaks per Day	 Internal starch reduction provides additional savings of 4 €/ton to 6 						
Cleaning Time	2 hr	€/ton					
Cleaning Chemical	1.	Biobond program in all cases paid for itself					
Basis Weight	1-2						
COD							
Total Savings			€11.41	€20.41			
Achland Water Technologia	•			ASHI AND			

Ashland Water Technologies

ADRILAND.

Case Histories

Ashland Water Technologies

Customer Overview:

- Segment: Packaging
- Product(s): Fluting and testliner from 90 g/m² up to 160 g/m²
- Equipment: Two layer fourdrinier with size press
- Capacity: 70.000 tons/year
- Furnish: 100% waste paper, household collecting and OCC grades
- WWTP: Anaerobic (UASB reactors) and aerobic

Problem Summary:

 After the start-up of a new paper machine, the mill was experiencing difficulties with their existing effluent plant. It was too small to cope with the increased Chemical Oxygen Demand (COD).

Customer Objectives:

- Reduce COD in the effluent plant
- Improve strength parameters in paper
- Improve runnability of the paper machine

Customer Benefits:

- Reduced COD load and stable process conditions at the effluent plant
- Improved runnability of the paper machine
- Improved strength parameters
- Reduced usage of surface starch
- Positive ROI. Savings on surface starch and overall improvement on machine runnability

Reduction of starch concentration at size press

Case History #2 – Eastern Europe

Customer Overview:

- Segment: Packaging
- Product(s): Testliner, corrugated medium, 90 175 g/m²
- Equipment: Fourdrinier with size press
- Capacity: 90,000 tons per annum
- Furnish: 100% waste

Problem Summary:

• The mill wanted to optimize the treatment program that would help them improve strength and also reduce overall treatment costs.

Customer Objectives:

- Reduce cost
- Improve strength
- Maintain drainage
- Maintain runnability

Case History # 2 – Eastern Europe

Customer Benefits:

- Stop their previous treatment program including PVAm
- Maintained strength with 13.7% reduced starch concentration in size press
- Reduced COD by 20% in the effluent
- Improved retention and overall performance
- Overall cost reduction of 12%

ASHI

Customer Overview:

- Segment: Packaging
- Product(s): Fluting and testliner from 100 g/m² up to 160 g/m²
- Equipment: Two duo formers with size press
- Capacity: 360,000 tons/year
- Furnish: 100% waste paper
- WWTP: 100% closed mill no effluent, no discharge of water possible

Problem Summary:

 Bad odor in produced paper, in the mill and neighborhood due to acidification in the process water, org. acids ~15.000ppm. High production cost due to bad runnability of the paper machine caused by low system pH, high conductivity and anaerobic system conditions.

Customer Objectives:

- Elimination of odor issues and microbiological-related production problems
- Improve runnability of the paper machine

pH - Development

∠u

Conductivity - Development

- Cleaniness from shut-down to shut-down
- Reduced or eliminated sheet defects and breaks
- Reduced time and cost for cleaning
- Clean machine spray areas
 - Improved runnability

Results:

- Increased pH
- Positive ORP
- Reduced Ca load and conductivity
- No odor issues
- Reduced deposition
- Improved system cleanliness
- Improved runnability

Results:

- Reduction of surface starch
- Improved strength properties
- Reduced chemical consumption

Recycle more. Recycle starch. Recycle strength.

With good chemistry great things happen.[™]

Ashland Water Technologies