

A Prototype for Simultaneous Measurement of Retention, Dewatering and Fiber Flocculation

M. Trimmel, R. Eckhart, W. Bauer 18 October 2013

Outline

- Introduction
- Laboratory device for Flocculation, Retention and Dewatering Analysis
 - Measurement of Flocculation
 - Prototype for Measurement of Dewatering and Retention
 - Headbox
 - Dewatering Unit
- Conclusions
- Outlook

Outline

Introduction

- Laboratory device for Flocculation, Retention and **Dewatering analysis**
 - Measurement of Flocculation
 - Prototype for Measurement of Dewatering and Retention
 - Headbox
 - **Dewatering Unit**
- Conclusions
- Outlook

Formation	- mechanical properties
	 structural properties
	 optical properties

Retention - higher amount of fillers - reduction of costs Dewatering - reduction of costs - improves runability

Matthias Trimmel

⁵ Introduction

- Retention, dewatering and formation are highly interrelated
- A change of one affects the others

Outline

Introduction

- Laboratory device for Flocculation, Retention and **Dewatering Analysis**
 - **Measurement of Flocculation**
 - Prototype for Measurement of Dewatering and Retention
 - Headbox
 - **Dewatering Unit**
- Conclusions
- Outlook

⁷ Laboratory Device for Flocculation, Retention and Dewatering Analysis

- Flow loop for flocculation analysis
- Three dosage points
- Observation channel and high speed camera
- Dewatering device for the measurement of
 - Retention
 - Dewatering
- Transparent headbox
- Dewatering unit resembling a Fourdrinier former

Outline

- Introduction
- Laboratory device for Flocculation, Retention and **Dewatering Analysis**
 - Measurement of Flocculation •
 - Prototype for Measurement of Dewatering and Retention
 - Headbox
 - **Dewatering Unit**
- Conclusions
- Outlook

Measurement of Flocculation

- Volume of the chest: 40 liter
- Measuring at headbox consistency
- Three dosage points
- Transparent observation channel
- High speed camera

¹⁰ Measurement of Flocculation

Matthias Trimmel

DITP Symposium 2013

Flow Velocity 2-3 m/s Channel-geometry: length: 100 cm width: 3.5 cm height: 1.6 cm

Turbulences at the beginning of the channel

¹² Measurement of Flocculation

 Acquisition of images of circulating suspension in the region of decayed turbulence => stable structures/flocs

Evaluation of images by FFT – Structure Analysis

Outline

- Introduction
- Laboratory device for Flocculation, Retention and Dewatering Analysis
 - Measurement of Flocculation
 - Prototype for Measurement of Dewatering and Retention
 - Headbox
 - Dewatering Unit
- Conclusions
- Outlook

¹⁴ Measurement of Dewatering and Retention

¹⁵ Measurement of Dewatering and Retention

Prototype for Measurement

- Headbox
- Pulp consistency: 1%
- Geometry similar to that of a standard headbox

- Different devices included in the headbox for distribution and orientation of pulp fibers
- Headbox construction can be changed easily

¹⁷ Prototype for Measurement

• Headbox – Velocity Profile

¹⁸ Prototype of Measurement

- Dewatering Unit
- Resembles a Fourdrinier paper machine
 - SC/LWC wire
 - Maximum wire speed: 120 m/min
- Wire is lead by three rolls
 - Breast roll
 - Arched rubberized driving roll
 - Deflector roll

¹⁹ Prototype of Measurement

- Dewatering Unit
- Vacuum-supported dewatering
 - Length of the vacuum zone: 700mm
 - Two vacuum levels
- Wire conditioning by air pressure and water nozzles
- White water gathered for measurement of retention and dewatering

²⁰ Prototype of Measurement

• Dewatering trial

- Measurement of retention
 - Grammage / ash content of the dewatered fiber web
 - White water consistency
 - Outlook: online-measurement by means of a nephelometer
- Measurement of dewatering
 - Moisture of fiber web
 - Water volume in white-water tank

Outline

- Introduction
- Laboratory Device for Flocculation, Retention and Dewatering Analysis
 - Measurement of Flocculation
 - Prototype for Measurement of Dewatering and Retention
 - Headbox
 - Dewatering Unit
- Conclusions
- Outlook

Conclusion

- Measurement of flocculation is done in an observation channel
- Evaluation of flocculation by structural analysis of the acquired images
- Measurement of retention and dewatering can be done by a dewatering device in laboratory scale
- The geometries of the headbox are similar to a standard headbox
- The dewatering unit resembles a Fourdinier paper maschine
- Fast and easy way to measure flocculation, retention and dewatering in the laboratory scale under industry oriented conditions

²⁴ Outlook

- Enhance the measurement of retention by an online measure
- Experimental series with different pulps and chemical additives
- Compare the results of retention and dewatering acquired by the dewatering unit with standardized techniques

Thank you for your attention!