

ABB Paper Automation Reinhard Amann BLED 2014

Optimization Services Paper Machine Fingerprint Process Fingerprint

Optimization Services Phases

Diagnose

- Measure process
- Detailed scope with defined objectives
- Forecast performance
- Implement
 - Improve performance
 - Apply corrective actions
- Sustain
 - Maintain performance
 - Preventative maintenance
 - Monitor machine index

Optimization Services Paper Machine Fingerprint

Optimization Services Phase 1: Diagnose - Paper Machine Fingerprint

Paper Machine Fingerprint Module 1: VPA (Variance Partition Analysis)

Analysis of variance distribution

Paper Machine Fingerprint Module 2: Product Variability

Paper Machine Fingerprint Module 3: Machine Response

Diagnose	
Implement	
Sustain	

- Based on bump tests of the QCS controls in Manual and Auto, time constants are determined and compared.
- The relation between Manual and Auto represents an index that indicates the performance of the control. A Value of 1.5 is the target based on experience. Results of the machine response analysis:
- Comparison of the responses in Manual and Auto
- Additional findings:
 - Wrong process model parameters in the QCS
 - Improvements with or without feedforward controls
 - Bad control parameters in QCS
 - Performance of DCS loops (Level 1)

Paper Machine Fingerprint Module 4: Profile Capability

Diagnose

Analysis

Implement

Sustain

- - The controllable frequencies and with that a residual goal plot are determined from the raw profiles with Fourier analysis (FFT)
- Findings
 - Edge problems
 - Mapping problems
 - Wrong process models
 - Bad control parameters •
 - Actuator problems
 - Influences from wires and felts
 - Control behavior after breaks and shutdowns
 - Grade-dependent tuning

© ABB Group | PASC -Optimization Services_EN_RevC 2013-04-10 |

Paper Machine Fingerprint Module 5: Stock Stability

Diagnose

Analysis

Implement

Sustain

- An index is calculated based on comparison of measured values and setpotints. It shows the quality of the process variable.
- Findings
 - Indices are compared to target values
 - Improvement potential is revealed

Paper Machine Fingerprint Summary

Diagnose

Implement

Sustain

 Results of the Paper Machine Fingerprints:

- Daily detailed report of the accomplished analysis
- Index-based summary of KPI's
- Summary of critical areas
- Implementation plan to improve the machine performance
- Return on investment (ROI) forecasts

Phase 2: Implement Example

Diagnose

Implement

Sustain

• Example for proposed improvements for a medium mill:

Target shift: Weight

- A 0.1lb shift in basis weight can be made. This results in savings of **\$116.500**.
- Target shift: Moisture
 - A 0.1% moisture target shift (i.e. 8.9 to 9.0) can be made. If speed limited the savings would be **\$40.600**.
- Sheet break recovery, number of breaks and faster startup
 - A 5 min improvement after a break and less breaks represent **\$264.300** in savings.
- Reduced rejects and customer returns
 - Improvement in quality results in savings of **\$4,180**.
- Total benefits
 - If the recommendations are followed, the savings as a result of the project will be **\$425.580**.

Optimization Services Phase 3: Sustain

Optimization Services Loop Performance Fingerprint

Optimization Services Loop Performance Fingerprint

Loop Performance Fingerprint Module 1: Process Stability

Analysis

Implement Sustain

Diagnose

- Assessment of control quality in DCS-based analysis of data logs (12-24h with 5s) and
- Calculation of performance indices for the areas Process, Control and Signal Conditioning.

Control

🔽 Manual

Deadband

🔲 Over Control

Process

Bad Valve
 No Signal
 Process Out Of Range

Strange
Oscillation

Quantized
 Spikes

🔲 Over Filtered

🔽 Noisy

Signal Conditioning

Output Out Of Range
 Oscillating Setpoint

Oscillating Output
 Slow Control
 Offset

3 🛛 🕾

Severity

0.6474355

Severity

0.6476206

Severity

9900

8501.176

100

Information about:

- Tuning problems
- Process upset response
- Bad valves
- Over filtering
- Quantized signals
- Noisy signals

Γ	Control					Process					Signal Conditioning					
	Manual	Oscillating Output	Output Out Of Range	Offset	Over Control	Oscillating Setpoint	Slow Control	Deadband	Oscillation	Strange	Bad Valve	No Signal	Process Out Of Range	Noisy	Spikes	Over Filtered
1	FIC60- 2467E	TIC60-687	LIC60-2410E	FIC60- 2411E	PIC61-021	PIC61-021	LIC60- 2400		PIC61-021	PIC60-619	LIC60- 622	FIC60- 2467E		FIC60- 2468E	FIC60- 2409E	LIC60-2400
2	FIC60- 2447E	LIC60-689	PIC60-668	LIC61-071	LIC60- 2445E	FIC60-2468E			LIC61-070	LIC61-071	TIC61- 033			PIC60-730	PIC61-021	TIC60-687
3	AIC61-020	LIC61-070	PIC60-643	FIC60-667	TIC61-033				LIC60-689	LIC60-650				FIC60- 2431E	CIC60- 2401E	LIC60- 2445E
4	CIC60- 2401E	FIC60-2431E	LIC60-671	FIC60-653	PIC60-730				CIC60- 2422E	LIC60-622				LIC60- 2445E	FIC60- 2431E	
5	TIC60-638	FIC60-2411E	LIC61-071	FIC60- 2469E					PIC60-655	FIC60-653				AIC61-010	FIC60- 2404E	
6	CIC60- 2422E	LIC60-622	LIC60-2400	TIC61-031					FIC60- 2431E	PIC60-655				PIC60-655	SIC60- 2457DE	
7	PIC61-009	TIC61-033	PIC60-666	LIC60- 2410E					CIC60- 2401E	LIC60-671				CIC60- 2401E		
8	FIC60- 2409E	TIC61-031	TIC60-687			F			Р	rocess Stabi	ity Index					
9	LIC60- 2410E	LIC61-071	AIC61-010			10										
10	SIC60- 2415E	FIC60-2468E				0-		-						_		
11	FIC60- 2449E					8-										
12	FIC60-653					2										
13	FIC60-667					a Ooorre										
14																
A	area/Gra	aphic				0-	Oscillation		Strange	Bad Vah	ne Pro	ocess Out Of Ra	nge No Signal			
N	lame	R	ank	Loop	1	Desc.		Ac	tion	Con	nment					
Ρ	PU															
Ρ	PU Cau	ustic M	Medium	LIC84806		P200LF1		N/	A	Dea	d sign	al				
				LIC8483	24	P200LF2		Tu	ine	Valv	e satu	rates lo	W			
D	eethan	izer H	igh	FIC840	41	Feed		Oł	<	Res	ponse	is a littl	e slow			
				FIC840	73	Reflux		Tu	ine	Stro	ng oso	cillation	5			
				PIC840	71B	Ovhd. Pre	ssure	Tu	ine	Offs	et, pro	bably F	-only contr	ol, very	slow	
				LIC840	54	Bottoms L	evel	OF	<	Res	ponse	is a littl	e slow			
_				FIC84055 E		Bottoms Flow		10	ine	1 m	1 minute cycles					
C	,s spiπ	er High		LIC94152A B		Bottoms FIOW C			\ 	Stay	Stays close to SP, bottoms level runs flooded					
				EIC041	53A 54	Reflux Dru Roflux from	ani Deve		ine 7	Trees	nates,	DULCO	ianal naisu	macugh	i.	
				FIC041	34 1.4	Reflux from	n Drum		`	Flow	rks ⊃P ⊭dniffe	UK, S	ignal noisy			
				LIC941	50	Condense	n Exch	уг. IVI8 т.	inuar	Slow	r ann(S r theo	osoilla	too 5% of 4	0	vele	
				DIC8/11	14	Drum Prov	a Reura	10	ine ine	SIOW	, inen	7A in p	uca 376 all 4 nanual colu	ump cp	this pro	eeuro
-				10041			saure	- 10	110		041/	14100	ionitian, con	annion	uns pie	Jaure
Δ	rsine R	emv H	iah I	FIC841	29	Feed rate		101	ς	Entro	WWS SP	thoint o	hande do	nd setor	nint cros	sina

Results Report

• etc.

Loop Performance Fingerprint Module 2: Loop Tuning Evaluation

Implement Sustain

Diagnose

S:

- Benchmarking of DCS control loop tuning through analysis of tuning parameters
- Cluster analysis: Comparison of current and expected tuning per process area
- For like processes, tuning should be similar

Information about:

- Validity of tuning setup
- Tuning clusters vs. process type
- Default tuning
- Tuning history
- Frequent changes

Loop Performance Fingerprint Module 3: Root Cause Analysis

Analysis

Implement Sustain

Diagnose

- Assessment of process and control loop interactions through analysis of historical data
- Identifies true source of process disturbances.

Information about

Process couplings and interactions

Goal

- Define disturbance root cause
 - Non-linear theory
 - Phase theory
 - Logical clusters
- Group of like cyclic components

Group like time signal signatures

© ABB Group | PASC – Optimization Services_EN_RevC 2013-04-10 |

LIC84042B PIC84214 MV 327.1 326.6 326.1 ≩ 325.6 325.1 324.6 324.1 61.10 61.05 61.00 ≩ 60.95 60.90 ⁷⁰ 60.85 60.80 60.75 60.70 PEDALIZA 64.4 64.2 PC Sel 64.0 63.8 To be and 63.6 63.4 3210 The blac where the table builds in cash

Benefit

- Isolate problem areas
- Quickly determine disturbance source
- Remove disturbance rather than to tune around it

Loop Performance Fingerprint Loop Performance Channel in ServicePort

Diagnose Implement Sustain

- ServicePort is a service delivery platform which customers and ABB experts can securely access.
- Loop Performance Channel supports optimization:

 View (real-time) shows raw data associated with each control loop

- Scan (scheduled) presents KPIs generated from raw data through periodic diagnostic monitoring

 Track (event-triggered) continuously monitors between Scans and generates notifications based on predefined KPIs

Rules

Math

Optimization Services ABB Remote Access Platform

Optimization Services ABB Remote Access Platform

Diagnose	 1) Trouble-shooting 							
Implement	 Remote access on demand for fault analysis and trouble-shooting 							
Sustain	 2) Periodic Maintenance 	•ABB-Service						
	 Periodic analysis and status checks 							
	 3) Continuous Monitoring 							
	Continuous real-time monitoring of critical plant parameters	Applikationsserver						
	- Support Kommuni	kationsserver						
	- Engineer™ I I I I I I I I I I I I I I I I I I I	ximum availability						
	-Kunde · Red	duced maintenance costs						
	· Rea	al-time access and support from ABB						
	• Qui dev	ickly access other ABB expertsd and velopers						
	- Fas	ster and partly automated exchange of						

information

Power and productivity for a better world[™]

