Variable Capacity Vacuum System and Efficient Nip Dewatering bring Energy Savings

Principles and experiences

Jyrki Uimonen
Speech in Slovenian Paper Association 2014
WHAT IS A GOOD VACUUM SYSTEM?

• Maximizes and stabilizes dewatering rate in various production conditions (grade, speed, felt age, ..)
• Keeps paper web in good control
• Keeps felts in optimal moisture when entering the nip
• Energy efficient
• Water economical
• Operator friendly
• Maintenance friendly
LIMITATIONS OF EXISTING VACUUM SYSTEMS

• Fixed speed or limited range: fixed capacity
• Systems overdimensioned (safety margin): high energy consumption
• No tools for economical use of vacuum (valves for control flows/vacuums)
• High water consumption
• Need for water treatment
• Building and piping set limits for rebuild
Different energy cons in different mills, due to:
- Machine concept
- Furnish
- Paper grade
- Vacuum concept
- Tradition
Lower vacuum can bring higher dewatering

=> Max Dewatering with OPTIMAL vacuum
DIRECT DRIVEN VARIABLE SPEED TURBO SAVES

HIGH SPEED (10000rpm)
⇒ COMPACT DIMENSIONS AND LOW WEIGHT

DIRECT DRIVE
⇒ NO GEARBOX, NO COUPLINGS

MAINTENANCE ACTIONS ONSITE,
NO NEED FOR HEAVY LIFTING

VARIABLE SPEED DRIVE
⇒ ADJUSTS TO REAL NEED OF CAPACITY

⇒ SUPERIOR ENERGY EFFICIENCY
System configuration

- Cooling Air
- Blower Outlet
- Vacuum Breaker Valve
- Turbo Blower
- Power Supply
- Frequency Converter
- DCS
- Drop Separator
- Discharge to Seal Pit Tank or Pump
- Suction Position

Scope of delivery
IMPROVED NIP DEWATERING to handle larger water amount

- Uhle box vacuums lowered, less water in uhle box
- Better functioning nip, more water in the nip
- Air doctor blade to remove the increased nip water from rolls
- Suction press roll saveall pan modified to collect the water removed in the nip

=> Total dewatering was increased due better nip dewatering

UPM Grand Couronne PM3
SCPE OF A REBUILD

- Process survey and rebuild plan
- Turbo including electric drive and lubrication (one or several)
- Separator for each turbo
- Nip improvement package: air blade, high performance saveall
- Pipeline modifications
- Electric and automation installation

Possibly also:
- Heat recovery
REBUILD SCOPE OPTIONS

- Always the whole system to be evaluated to avoid suboptimisation
- Either all or just some of the pumps replaced
- Turbos installed in positions where the positive impact is best

- The best payback comes with partial rebuild
- Stepwise realisation reduces (or eliminates) the need for shutdown
ADAPTIVE DESIGN

EXISTING BUILDINGS AS STARTING POINT

EXISTING PUMP BEDS AS FOUNDATIONS

EXISTING PIPING UTILISED WHEREVER FEASIBLE

⇒ SAVINGS IN MONEY
⇒ SAVINGS IN SHUT DOWN TIME
Press section dewatering control

Flows from nip and uhle box of each felt monitored
Felt, vacuum and dewatering optimisation

![Graph showing water flow over time with labels for Good Felt, UHLE Box, and Save All categories.](image-url)
INSTALLATION IN LIMITED SPACE
UPM Grand Couronne PM3

Turbo Blower T1: forming section

Turbo Blower T2: pick-up and suction press roll
Both mounted on the foundations of the old system
Utilizing old piping, too
Mondi Ruzomberok PM18

VACUUM SYSTEM REBUILD WITH TURBO BLOWER
(SINGLE SHOE PRESS, FINE PAPER, 1550 M/MIN)

Power kW

<table>
<thead>
<tr>
<th>Old system</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASH x 9</td>
<td>2150</td>
</tr>
<tr>
<td>Altogether</td>
<td>2150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New system</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP400-700-D1</td>
<td></td>
</tr>
<tr>
<td>EP500-700-S</td>
<td></td>
</tr>
<tr>
<td>NASH x 4</td>
<td></td>
</tr>
<tr>
<td>Altogether</td>
<td>1500</td>
</tr>
</tbody>
</table>

RESULTS

- Energy savings **650 kW** (30% of the original situation)
- Additional saving potential 100 kW if pump#8 is stopped.
- Specific energy consumption **31 kwh/ton** for vacuum system
Mondi Ruzomberok PM18

VACUUM SYSTEM REBUILD WITH TURBO BLOWER
(SINGLE SHOE PRESS, FINE PAPER, 1550 M/MIN)

PROJECT REALISATION IN STEPS

• Vacuum system and dewatering survey

• (30% of the original situation)

• Additional saving potential
 100 kW if pump#8 is stopped.

• Specific energy consumption
 31 kWh/ton for vacuum system
Mondi Ruzomberok PM16
VACUUM SYSTEM REBUILD WITH TURBO BLOWER (FINE PAPER)

RESULTS
• Energy savings 310 kW (32kWh/ton) (43% of the original situation)
• Improved vacuum control
Stora Enso Ostroleka PM8
GREENFIELD VOITH LINERBOARD MACHINE IN POLAND

KEY TARGETS
• Top energy efficiency
• No water consumption
• Backup process connections
• Savings in building cost
• Savings in piping cost

APPROACH
• Compact/lightweight turbos give more freedom in planning => Totally new type layout
• Concrete separator possible when new building is made
• Cost efficient piping as a part of system and building design
KRPA Hostinne

Starting point:
- 6 water ring pump system with complex piping as a result of various modification during many years
- High specific power consumption
- Problems in water separation

Actions:
- Eliminating leaks and excessive pressure losses
- Redesigning the vacuum system to hybrid system:
 - Couch roll to be served with old water ring pumps
 - All other positions with a single impeller turbo
KRPA HostinnePM6
VACUUM SYSTEM REBUILD WITH TURBO BLOWER (Greaseproof paper 5tph)

RESULTS

- Energy savings **350 kW** (43% of the original situation)
- Savings in seal water
- Improved vacuum control
- Flexible use in different grammages

<table>
<thead>
<tr>
<th>Old system</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 water ring pumps running</td>
<td></td>
</tr>
<tr>
<td>Altogether</td>
<td>800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New system</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP400-700-D1</td>
<td></td>
</tr>
<tr>
<td>1 water ring pumps running</td>
<td></td>
</tr>
<tr>
<td>Altogether</td>
<td>450</td>
</tr>
</tbody>
</table>

www.runtech.fi
STARTING POINT

- Old pumps requiring replacement
- High specific energy consumption
- Need to reduce seal water consumption
- Vacuum capacity to be adapted to future speed increase, as well as for wide product range
Schumacher Grudziaz PM1
VACUUM SYSTEM REBUILD WITH TURBO BLOWER (TESTLINER 10tph)

RESULTS

- **Energy savings** 350 kW
 (43% of the original situation)
- **Improved vacuum control**

<table>
<thead>
<tr>
<th>Old system</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 water ring pumps running</td>
<td>800</td>
</tr>
<tr>
<td>Altogether</td>
<td>800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New system</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP400-700-D1</td>
<td>450</td>
</tr>
<tr>
<td>1 water ring pumps running</td>
<td></td>
</tr>
<tr>
<td>Altogether</td>
<td>450</td>
</tr>
</tbody>
</table>
FUTURE DEVELOPMENT:

NIP DEWATERING DEVELOPMENT
DEWATERING MEASUREMENT SYSTEM (ECOFLOW)
DOCTORING SOLUTIONS
WATER COLLECTING IMPROVEMENTS
⇒ HIGHER PRESS DRYNESS
⇒ LOWER ENERGY CONSUMPTION

HEAT RECOVERY: UTILISING THE SAME PUMPING ENERGY
ONCE AGAIN => FURTHER SAVINGS

REBUILDS WITHOUT SHUTDOWNS
SUMMARY

Good payback and limited investment can be reached through:
- Energy efficient vacuum sources
- Equipment adaptable in existing equipment and limited space
- Utilising existing foundations and piping

Additional benefit through:
- Installations not requiring shutdowns other than regular mainenance/fabric change shuts
- Utilising heat recovery potential
- Improving both process performance and energy efficiency
Thank you!