

The transition from smart building to smart city scale Dr. Miimu Airaksinen, Finnish Association of Civil Engineers RIL

Buildings and cities has a central role

- Urbanization is on of the big megatrends (93% of the urbanisation in developing countries)
- 78% of European citizens are living in cities (54% globally)
- 85% of GDB in Europe (70% globally) is created in cities
- 90% of all innovations are cone in cities
- At the same time over 70% of all CO2 emissions are originated from cities

UN New Urban Agenda first time includes smart cities

Smart city is not a value as a such, but it enables

- Good living
- Resource efficiency
- Economic growth

Smart city is not an admistrative region.

A city has many systems and sub systems which are interlinked and interconnected

- Both system design and operation are in system level, with multi objective optimization
- Since many systems are connected the decision making and leadership processes need to change.
- In addition the business models are in transition (many stakeholders, new eco-systems)

Everything is connected Every second 127 devices are connected to the internet

Use of mobile data per SIM

Energy system is changeing

Source: Kiviluoma J, 2013, VTT http://www.vtt.fi/inf/pdf/science/2013/S35.pdf

City development

Dynamic simulation of different technology options in building and energy planning

Intelligent control algorithms based on real time data and demand side management can decrease CO₂ emissions remarkably

Al-assisted energy planning

Case example: Östersundom

- Lifetime cost 14–17 % smaller after optimization
- CO₂ emissions were 29–32 % smaller
- Planning was supported by a genetic algorithm that went through
 2 000 scenarios in 4 hours

Al-assisted Energy Optimization

User behaviour has a high impact on energy consumption

Vuosien 2001 ja 2005 välillä valmistuneiden rakennusten ominaiskulutukset

- Kerrostalojen
 lämpöenergian kulutus kerrosalaa kohti
- Rivitalojen lämpöenergian kulutus kerrosalaa kohti
- Erillispientalojen lämpöenergian kulutus kerrosalaa kohti

Source TTY

Moving from internet of things to things of meaning

- Buildings have tens of thousands data points. We need M2M reading
- Combining data from different sources give rich overall picture and new knowledge
- The role of new technologies is high in building stock transformation
- Only the energy management of the buildings is estimated to be globally 5.5 mrd. US \$ at year 2020

Drones

- Location
- Site management
- Quality control
- Maintenance
- Last mile services

What kind of city and to whom?

- Existing buildings and infrastructures in cities
- Long life span of buildings
- We are designing city structures for inhabitants who are not even born yet !
- Adaptability of buildings and infrastructures

How to measure the performance of such a complex system like a city ?

Foundation of the smart cities is the sustainability, technology is enabling better efficiency and user well-being

People	Planet	Prosperity	Governance	Propagation
•Health (3)	•Energy & mitigation (7)	•Employment (2)	•Organisation (6)	•Scalability (10)
•Safety (4)	•Materials, water and land (10)	•Equity (2)	•Community involvement (5)	•Replicability (8)
 Access to (other) services (7) 	•Climate resilience (1)	•Green economy (3)	• Multi-level governance	
•Education (3)	•Pollution & waste (4)	•Economic performance (5)	(2)	
•Diversity & social cohesion (3)	•Ecosystem (2)	 Innovation (5) 		
•Quality of housing and the built environment (6)		•Attractiveness & competitiveness (1)		

Future building is resilient and active part of the whole city system

- Future adaptive building creates well-being
- New technologies like AI, printed sensors and adaptive algorithms will transform also existing stock smarter
- Smart building predicts changes and can prevent unwanted occasions

Building Information Models (BIM), Algorithms and Artificial Intelligence (AI)

ril

Adaptive building

Predictive and learning system Predictive maintenance

Flexible space use and new models for ownership

Multi-use spaces, shared spaces

Why climate resilience is important in cities?

The economic losses caused by weatherand climate-related extremes in the 33 European Environment Agency member countries between 1980–2016 was **over 450 billion euros**.

Main reasons were:

• floods ~40%

ril

- storms 25%
- droughts ~10%
- heat waves ~5%

The insurance coverage is 35 %.

Regarding impacts on human health, heat waves are the deadliest.

Weather and user behavior

When compared to people's regular activity patterns, certain weather conditions affected people's movements and activities noticeably at different times of the day

(Horanont et al 2013)

Data and privacy

Augmented reality

Cyper security

- Only in Europe 315 million people are using internet daily
- Different domains of our infrastructures are connected
- Cyper security is a growing business area, the European market is estimated to be over 100 mrd \$ (European Commission 2017)
- The amount and quality of attacts is increasing, the World Economic Forum estimated that the global costs are 445 mrd \$ yearly (WEF 2016)

Services

Future services like Living as a service

Just like a garden, the services are changing their color and form and they are perceived differently by different persons. Need for evolution of services.

The future is always overpredicted but underimagined

