Algae for wastewater treatment

Janja Zule, Gabriele Weinberger, Alp Ergünsel, Quentin Thiebaut

GZS, 19. junij 2013
Contents

1. Overview of project basics, aim, consortium, topics, execution

2. Materials and Trials

3. Summary of results
 1. Cultivation
 2. Degradation performance
 3. Algae-Bacteria-Biomass characteristics

4. Pilot plant operation

5. Summary
Project basics and aim

Title: Combined algal and bacterial waste water treatment for high environmental quality effluents (ALBAQUA)

Reduced energy demand for O_2 supply to aerobic treatment stages

Improved CO_2 balance and degradation performance

issue applicable, efficient and economical for the paper industry?
Project consortium
Project topics

- **Know how transfer**
- **WP 1**
 - Cultivation
- **WP 2, 4**
 - Operating conditions
- **WP 3, 5**
 - Degradation performance
 - Energy supply
 - Biofuel
 - Raw material
- **WP 6**
 - Utilisation of excess sludge/waste
- **WP 8, 9**
 - LCA, Economics

Microalgae
Trials – overview lab scale tests

Cultivation

• Isolation of algae from paper mill effluents
• Cultivation and pre-selection of suitable algae species

Design parameters

• Continuous operation of a lab scale waste water treatment unit
• Operated with real waste water of a paper mill wwtp
• Varying operating parameters
• Trials so far: with chlorella vulgaris
Results – algae isolation and cultivation

Example: algae observed in paper mill effluent

Isolation: dilution method by plating on agar plates

Re-suspension in medium of the isolated cells after plating

6 algae species suitable for paper industry effluent treatment found
Trials – lab scale plants
Trials – overview lab scale tests

Degradation performance

|------------------------|-------------------------------|-----------------------|----------------------------------|-----------------------------------|-----------------------------------|-------------------------------|---------------------|

Degradation performance of various effluents from paper industry

- Algae fixation trials
- Conventional activated sludge
- Algae-bacteria Biomass
- Algae-bacteria Biomass + Effluent 1
- Algae-bacteria Biomass + Effluent 2
- Algae-bacteria Biomass + Effluent 3
- Algae-bacteria Biomass + Effluent 4
- Single Algae-Biomass

Nearly similar operating conditions in all bioreactors
*Currently all trials with *Chlorella vulgaris***
Trials – operating conditions and parameters

<table>
<thead>
<tr>
<th>Operating parameter</th>
<th>Lab scale trials</th>
<th>Pilot trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>F/M</td>
<td>0.05–0.1 kg BOD₅/(kg dsm.d)</td>
<td>0.03 – 0.09 BOD : VS</td>
</tr>
<tr>
<td>HRT</td>
<td>2–5 d</td>
<td>2 d, 3,8 d, 1,8 d</td>
</tr>
<tr>
<td>DSM</td>
<td>0.3–2.5 g/l</td>
<td>0.5 – 2.5 g/l</td>
</tr>
<tr>
<td>nutrition load</td>
<td>C:N:P = 1100:6:0,5</td>
<td></td>
</tr>
<tr>
<td>O₂ concentration</td>
<td>2–6 mg/l</td>
<td>2–8 mg/l</td>
</tr>
<tr>
<td></td>
<td>(supplied by algae – no aeration)</td>
<td>(supplied by algae – no aeration)</td>
</tr>
<tr>
<td>temperature/pH</td>
<td>T 25 – 30° C; pH 7,5-8,5</td>
<td>T 15 – 30° C; pH 7,5-9,5</td>
</tr>
<tr>
<td>lighting</td>
<td>10:14 h and 12:12 h</td>
<td>natural daylight</td>
</tr>
<tr>
<td>measured parameter</td>
<td>Chl-a, DSM, COD, BOD₅, TOC, NH₄, NO₃, NO₂, PO₄</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(partly: microorganism composition) TOC (DOC)</td>
<td></td>
</tr>
<tr>
<td>calculated parameter</td>
<td>HRT, F/M, SRT, algae:bacteria ratio</td>
<td></td>
</tr>
</tbody>
</table>
Results – examples effluent degradation

COD degradation all Reactors

F/M 0,05 hrt 7d
F/M↑0,25 hrt↓ 1d

degradation %

time/d

Reactor 1
Reactor 2
Reactor 3
Reactor 4
Results – summary effluents degradation

<table>
<thead>
<tr>
<th>paper mill</th>
<th>Raw material</th>
<th>Products</th>
<th>Settle-ability</th>
<th>Degradation performance</th>
<th>No ext. Aeration</th>
<th>Chl a+b µg/ml</th>
<th>O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mech. pulp, waste paper</td>
<td>printing papers</td>
<td>☺☺</td>
<td>80 %</td>
<td>✧</td>
<td>✧</td>
<td>✧</td>
</tr>
<tr>
<td>2</td>
<td>pulp, waste paper</td>
<td>wood containing coated printing paper</td>
<td>☺☺</td>
<td>70 %</td>
<td>✧</td>
<td>✧</td>
<td>✧</td>
</tr>
<tr>
<td>3</td>
<td>waste paper</td>
<td>board</td>
<td>☺☺</td>
<td>80%</td>
<td>✧</td>
<td>✧</td>
<td>✧</td>
</tr>
<tr>
<td>4</td>
<td>waste paper</td>
<td>board</td>
<td>☺☺</td>
<td>70 %</td>
<td>✧</td>
<td>✧</td>
<td>✧</td>
</tr>
<tr>
<td>5</td>
<td>pulp</td>
<td>Woodfree graphic paper</td>
<td>☺☺</td>
<td>76 %</td>
<td>✧</td>
<td>✧</td>
<td>✧</td>
</tr>
<tr>
<td>6</td>
<td>waste paper</td>
<td>board</td>
<td>☺☺</td>
<td>72 %</td>
<td>✧</td>
<td>✧</td>
<td>✧</td>
</tr>
<tr>
<td>7</td>
<td>waste paper</td>
<td>board</td>
<td>☺☺</td>
<td>70 %</td>
<td>✧</td>
<td>✧</td>
<td>✧</td>
</tr>
<tr>
<td>8</td>
<td>waste paper, pulp</td>
<td>Woodfree graphic paper</td>
<td>☺☺</td>
<td>76 %</td>
<td>✧</td>
<td>✧</td>
<td>✧</td>
</tr>
<tr>
<td>9</td>
<td>waste paper, mech. pulp</td>
<td>Newsprint</td>
<td>☺☺</td>
<td>65 %</td>
<td>✧</td>
<td>✧</td>
<td>✧</td>
</tr>
</tbody>
</table>
Results - sedimentation of algae-bacteria-biomass

before

after 2h

SVI: 30-40 ml/g

Good settling conditions
Results - microscopic investigation
Results – algae-bacteria biomass characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mixed sludges</th>
<th>Activated sludge</th>
<th>Algae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash (%)</td>
<td>35 - 68</td>
<td>44</td>
<td>9</td>
</tr>
<tr>
<td>C (%)</td>
<td>23 - 34</td>
<td>36</td>
<td>46</td>
</tr>
<tr>
<td>N (%)</td>
<td>2,6 – 5,7</td>
<td>4,4</td>
<td>7,8</td>
</tr>
<tr>
<td>P (%)</td>
<td>2,0 – 3,9</td>
<td>2,2</td>
<td>4,4</td>
</tr>
<tr>
<td>Algae (%)</td>
<td>2,0 – 24</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Heating value (MJ/kg)</td>
<td>8 - 12</td>
<td>7</td>
<td>25,8 (Scenedesmus) 29 (Chlorella)</td>
</tr>
</tbody>
</table>
Trials – pilot plant
ALBAQUA
Biotechnological effluent treatment

Industrial waste

River Sora

Waste water tank

Cooling/heating system

Algae-bacterial photobioreactor

Data logging (pH, oxygen, conductivity, ORP, temp. sensors)

Mixing

Sludge recuperation

Treated water outflow

Sedimenter

Solar energy, CO2, nutrients
Trials – overview pilot system and operation

<table>
<thead>
<tr>
<th>Capacity bioreactor</th>
<th>340 l</th>
</tr>
</thead>
</table>
| **Start-up** | Initial batch tests
| | Continuous operation Aug-Nov |
| **Sampling** | **1x per batch cycle:**
| | input and output water
| | active biomass
| | waste sludge
| | **2x per week:**
| | input and output water
| | active biomass
| | waste sludge |
| **Operation conditions** | mixing, pH, temp., conduct. redox, O₂, settling time, degradation performance
| | Optimization of operation conditions: |
Characteristics Slovenian paper mill

Production
printing paper (primary fibers, different programs)

wwtp
chemo-mechanical waste water treatment
volume of treated water: 3,000 m³/day, 1,065,000 m³/year
volume of sludge produced: 1,800 t/year

<table>
<thead>
<tr>
<th>Effluent quality</th>
<th>Limit output values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspended solids</td>
<td>80 mg/l</td>
</tr>
<tr>
<td>COD</td>
<td>110 mg/l</td>
</tr>
<tr>
<td>BOD</td>
<td>20 mg/l</td>
</tr>
<tr>
<td>N, P total</td>
<td>N (15 mg/l); P (3 mg/l)</td>
</tr>
<tr>
<td>pH</td>
<td>7</td>
</tr>
<tr>
<td>Temperature</td>
<td>30 – 39 °C</td>
</tr>
</tbody>
</table>
Results – pilot operation

COD (mg/L) IN, OUT

BOD (mg/L) IN, OUT
Lessons learned

• Algal bacterial community develops into a **natural** mix

• Sufficient oxigenation is easily achieved with large margin

• Major threat: Chironomidae larvae consume the sludge (algae first)
 ➔ physical barriers (cover, insect net), occasional violent mixing
 and/or biological agents (Bti, Bs) integrated into the bacterial sludge

• Some additional (clean) algae inoculation will be necessary

• Insolation is **not** a major constraint, temperature and mixing are
 more important

• Flocculation is easy; thinking of more violent mixing to prevent
 insects, flocculation and sedimentation in the reactor and have
 more time for the flocculation in the sedimenter

• On-line control of nutrients and Chl a will be required

• Sludge is being tested for biogas (with good preliminary results)
Recommendations for operation

- HRT between 1-3 day(s) depending of the wastewater COD
- For highly polluted wastewaters (COD over 800 mg/l) this system can not be suggested.
- A biomass conc. 1.5 – 2.5 g/l and a SRT of 16-20 days favour the algae growth.
- A sedimentation time of 2 – 3 hours can be selected.
- Since there are no blowers in the system, stirrers are needed to keep the flocs suspended → dead zones have to be avoided.
- \(\text{O}_2 \) and pH of the system should be monitored.
- The colour of the system is a good indicator of system health.
- Intermittent aeration with blowers will favour the heterotrophic bacteria in the system and therefore it has to be avoided.
Summary

- good settling of algal-bacterial biomass most of the time and for most treated effluents from paper industry
- good degradation results
- no external aeration necessary in algae-bacteria-bioreactors; sufficient O$_2$ concentration for bacterial heterotrophic degradation activity supplied by algae photosynthesis activity
- extrusion/devour of algae by excess bacterial biomass growth under operating conditions of
 \[\text{HRT}<24 \text{ h}, \quad \text{DSM}_{\text{total}} > 3 \text{ g/l}, \quad B_{\text{TS}} > 0,25 \text{ kg BSB}_5/(\text{kg TS d}) \]
- unsatisfactory settling of algae on carriers/extrusion of algae by bacterial biomass
- Necessity of operation of covered/closed bioreactor system under natural conditions due to serious contamination problems (larvae)
Thank you for your kind attention!

Dipl.-Ing. (FH) Gabriele Weinberger

PTS
Ressourcenmanagement – Wasser und Energie
Heßstr. 134
80797 München

Tel.: 089/12146-463
Email: gabriele.weinberger@ptspaper.de

In collaboration with

Janja Zule, ICP-TCP Ljubljana, Slovenia
janja.zule@icp-lj.si

Alp Ergünsel, TU Hamburg-Harburg, Germany
erguensel@tu-harburg.de

Quentin Thiebaut, Celabor, Belgium
quentin.thiebaut@celabor.be