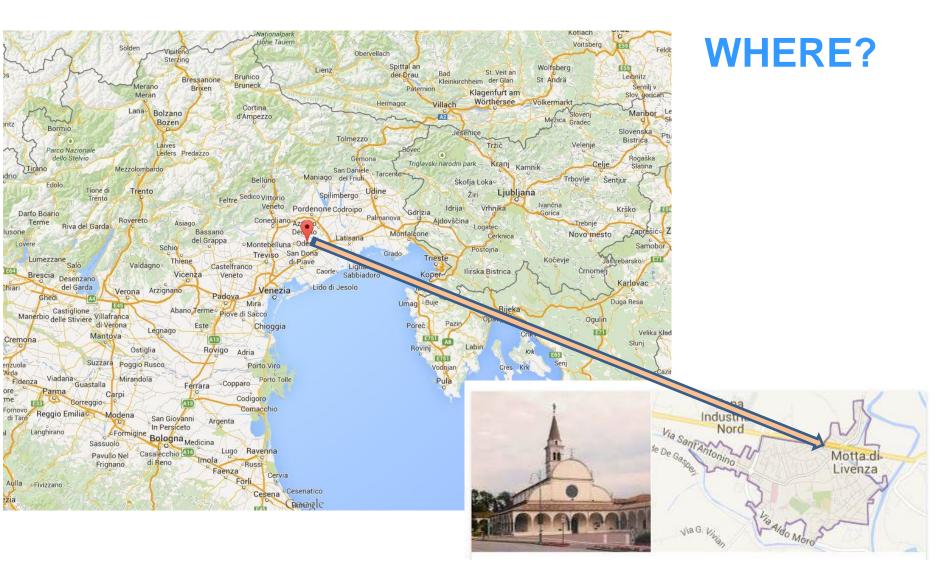


Sustainable Innovative Materials and Technology transfer, case history

Eng. Eva Tenan – MaTech Project Manager Ljubljana. – 12th December 2014

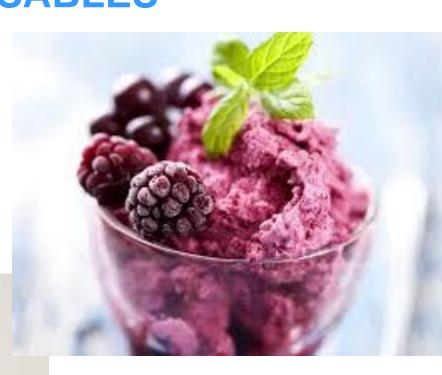
HOW TO INNOVATE?

BEST PRACTICE



POLOPLAST

SME company - ITALY



WHAT? CATERING DISPOSABLES

imageen

ICE CREAM

CAKES

- PLASTIC DISHES
- PLASTIC CUPS
- PLASTIC FLATWARE

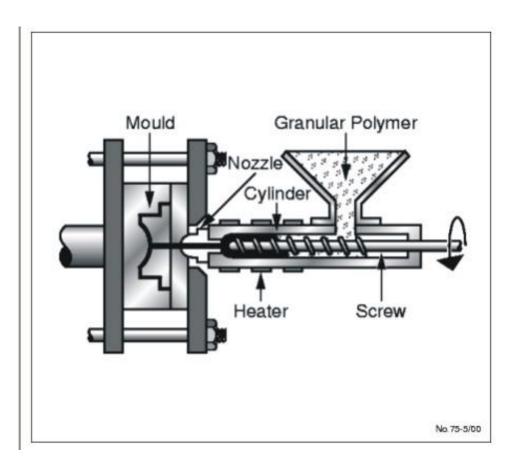
POLOPLAST

QUALITY

MADE IN ITALY

INNOVATION & DESIGN

imageen

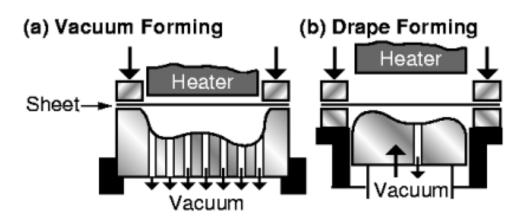


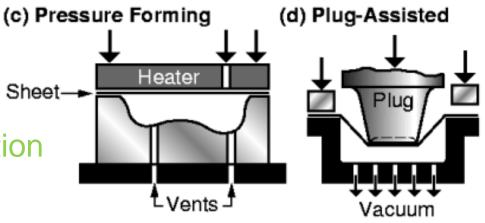
PROCESS – Injection Moulding

PP - Polypropylene

PS - Polystyrene

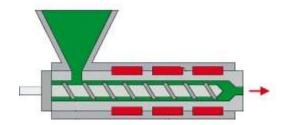
INNOVATION & SUSTANAIBILITY


2008 THERMOFORMING


2011

expansion of the plant dedicated to Thermoforming: technologies and systems for

environmental protection


THE CHOICE OF MATERIALS...

imageen

environmental protection

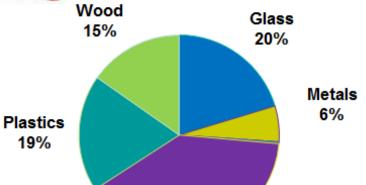
Material costs

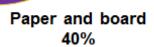
Technologies involved in the production

Compatibility with food contact

Methods of transport

Waste management





19%

Source: Eurostat - Data Centre on Waste

WHAT ABOUT POLYMERS?

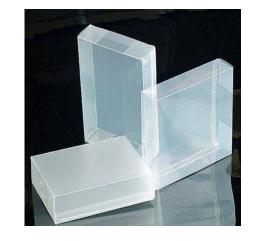
$$-CH_2-CH-CH_$$

Polyethylene (PE)

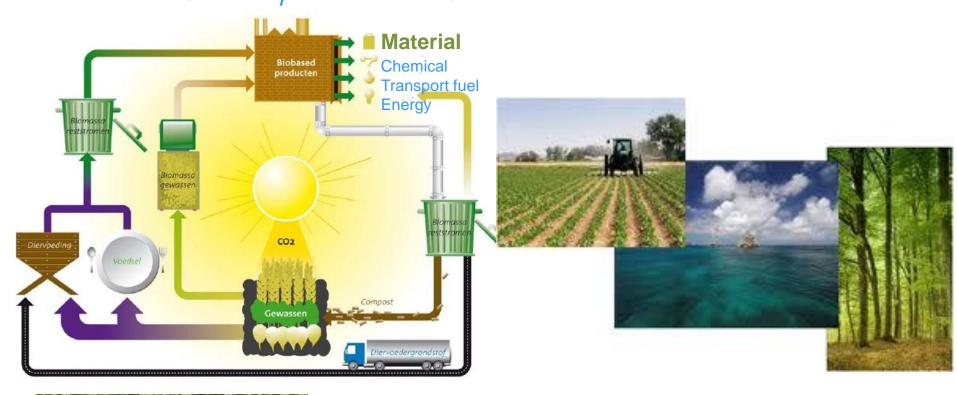
Polypropylene (PP)

Polyethylene Terephtalate (PET)

Polystyrene (PS)



APPLICATIONS



BIO-BASED PLASTIC

imageen

from

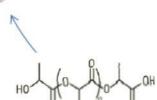
renewable ingredients / renewable biological resources / renewable raw materials

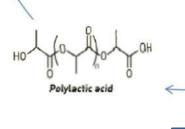
A bio-based material is a material made from substances derived from living (or once-living) organisms. Strictly the definition could include many common materials such as wood and leather, but it typically refers to modern materials that have undergone more extensive processing.

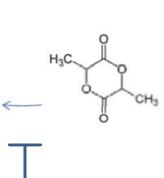
CORN STARCH

CASTOR OIL

SUGAR CANE







Composting H20 + CO2

Bacterial Fermentation

extensive processing

Lattide Lactide

 H_2O

H₃C

BIODEGRADABLE AND THERMOFORMABLE PLASTICS FROM PLA

Properties

Bio-based
Biodegradable
Compostable
Recyclable
UV resistant
Hypoallergenic

Working Processes

Injection moulding Thermoforming Blow moulding

Code NT6021

COMPOSTABLE FILM FOR FOOD PACKAGING

Properties

UV resistant
Suitable for food contact
Compostable
Reduced emissions
Bio-based
Biodegradable
Transparent
Thermal insulation
Electrical insulation
Antistatic

Working Processes

Lamination/coupling Welding

Code NT6046

PHA

LIPIDS

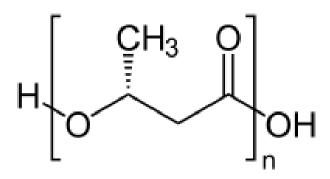
BIODEGRADABLE PLASTICS FROM PHA

Properties

Suitable for food contact
Compostable
Reduced emissions
Bio-based
Biodegradable
Biocompatible
Thermal insulation
Electrical insulation
Antistatic

Working Processes

Injection moulding
Blow moulding
Extrusion


Code PO2652

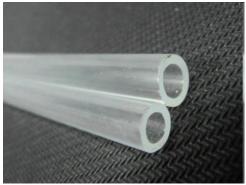
MAIN TECHNICAL CHARACTERISTICS

Linear polyesther

- Termoplastic
- UV resistant
- low water absorption
- up to 70% of cristallinity
- Biodegradable (EN13432)
- Biocompatible

EUROPE	USA	USA	CHINA	JAPAN
EN13432	FDA	ASTM D 6400	BMG	GREEN PLA

APPLICATIONS

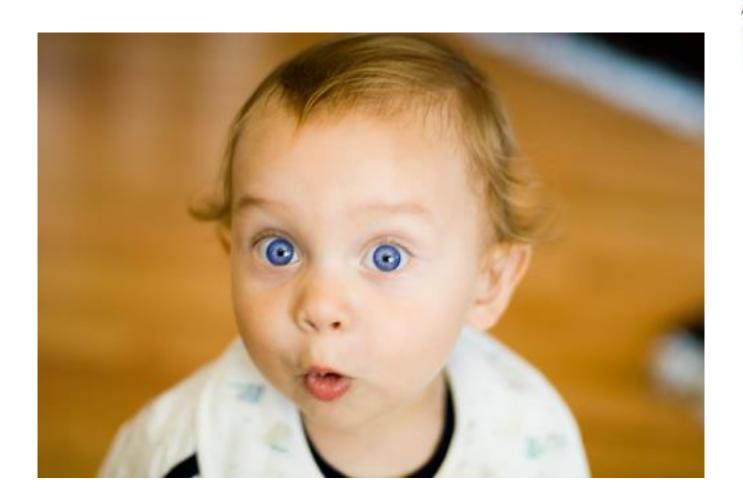

Injection moulding

Blow Moulding

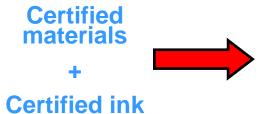
Bio-elastomers

FILM

SHEET



MORE?



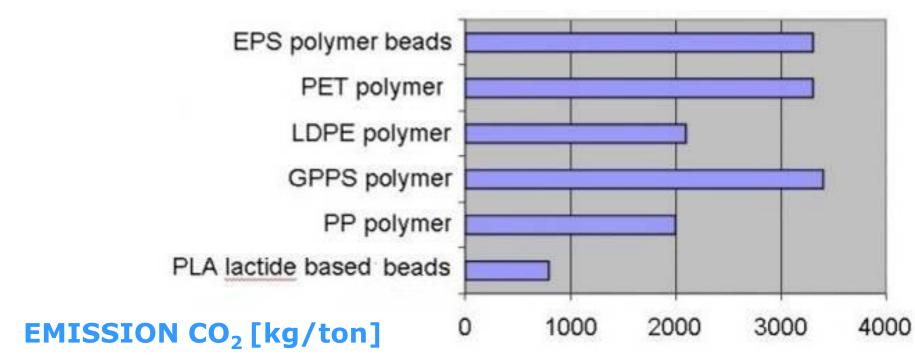
COMPOSTABLE INK

- Vincotte standard
- water or solvent-based
- no heavy metals
- the ink % depends on product kind

Design and product certification

Biodegradable FOAMS

From renewable resources

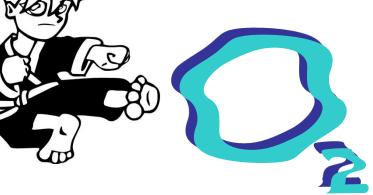


			EPS	
Thermal conductivity (MW/m·K)	35 g/l	34	33	30 g/l
Bending strength (kPa)	35 g/l	300	300	30 g/l
Compressive stress @ 10% deformation (kPa)	40 g/l	200	200	30 g/l
Compressive modulus (MPa)	40 g/l	4.0	3.0	30 g/l
Shear strength (kPa)	35 g/l	140	250	30 g/l
Shear modulus (kPa)	35 g/l	2.7	3.1	30 g/l
C-value (for drop testing) (-)	35 g/l	2.6	2.7	30 g/l

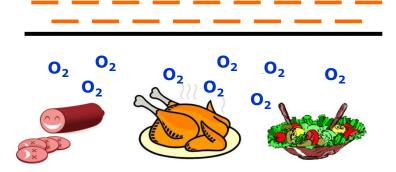
PACKAGING DERIVED FROM MUSHROOM MYCELIUM

imageen

TO PROTECT/ TO STORE SMART PACKAGING

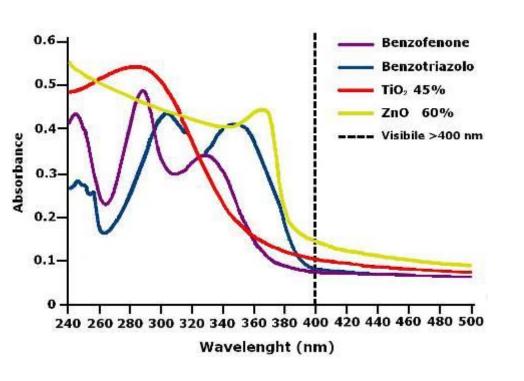


THE PACKAGING OF THE FUTURE



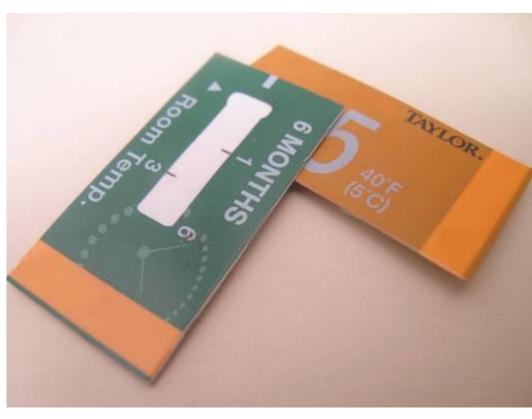
- LDPE, HDPE, PET, PLA and Others
- Antimicrobic with the addition of silver ions

Film with nanoclay+iron


Headspace

Food

Inorganic (TiO2 – ZnO) UV Radiations Absorbers

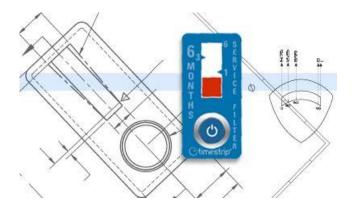

- suitable for food contact
- reversible reactions
- no yellowing
- optically performant
- available as dispersion powder or masterbatch (PE o PP)
- suitable for not polar polymers

LABELS

LIFETIME COMMUNICATION

From few minutes till years

A way to decrease food wastage



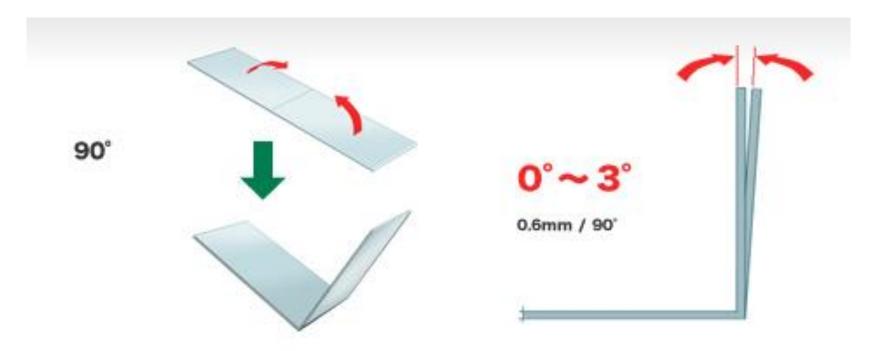
imageen

CUSTOM SOLUTIONS

Monitoring TIME

Monitoring TEMPERATURE

TO MONITOR - TO INFORM - TO PROTECT

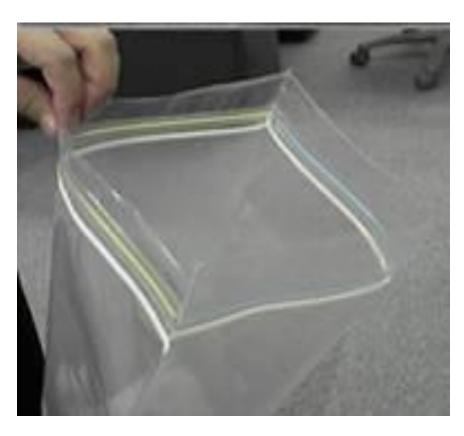


TO REMEMBER - TO PROMOTE

Shape Retaining Polymers

100% PE

Very small "returning angle"



APPLICATIONS

www.matech.it

info@matech.it

THANKS!

PADOVA